Probing a Hybrid Channel for the Dynamics of Non-Local Features

被引:0
|
作者
Rahman, Atta ur [1 ]
Yang, Macheng [1 ]
Zangi, Sultan Mahmood [2 ,3 ]
Qiao, Congfeng [1 ,4 ]
Lukoyanov, Alexey V.
机构
[1] Univ Chinese Acad Sci, Sch Phys Sci, Yuquan Rd 19A, Beijing 100049, Peoples R China
[2] Univ Okara, Dept Phys, Okara 56300, Pakistan
[3] Yunnan Univ, Sch Phys & Astron, Kunming 650500, Peoples R China
[4] CAS Ctr Excellence Particle Phys, Beijing 100049, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 12期
基金
中国国家自然科学基金;
关键词
thermal reservoir; magnetic field; classical dephasing; static noise; quantum characteristics; UNCERTAINTY PRINCIPLE; QUANTUM; HEISENBERG;
D O I
10.3390/sym15122189
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Effective information transmission is a central element in quantum information protocols, but the quest for optimal efficiency in channels with symmetrical characteristics remains a prominent challenge in quantum information science. In light of this challenge, we introduce a hybrid channel that encompasses thermal, magnetic, and local components, each simultaneously endowed with characteristics that enhance and diminish quantum correlations. To investigate the symmetry of this hybrid channel, we explored the quantum correlations of a simple two-qubit Heisenberg spin state, quantified using measures such as negativity, l1-norm coherence, entropic uncertainty, and entropy functions. Our findings revealed that the hybrid channel can be adeptly tailored to preserve quantum correlations, surpassing the capabilities of its individual components. We also identified optimal parameterizations to attain maximum entanglement from mixed entangled/separable states, even in the presence of local dephasing. Notably, various parameters and quantum features, including non-Markovianity, exhibited distinct behaviors in the context of this hybrid channel. Ultimately, we discuss potential experimental applications of this configuration.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Non-local crowd dynamics
    Colombo, Rinaldo M.
    Garavello, Mauro
    Lecureux-Mercier, Magali
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (13-14) : 769 - 772
  • [2] Image Dehazing Based on Local and Non-Local Features
    Jiao, Qingliang
    Liu, Ming
    Ning, Bu
    Zhao, Fengfeng
    Dong, Liquan
    Kong, Lingqin
    Hui, Mei
    Zhao, Yuejin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [3] Probing aqueous ions with non-local Auger relaxation
    Gopakumar, Geethanjali
    Muchova, Eva
    Unger, Isaak
    Malerz, Sebastian
    Trinter, Florian
    Oehrwall, Gunnar
    Lipparini, Filippo
    Mennucci, Benedetta
    Ceolin, Denis
    Caleman, Carl
    Wilkinson, Iain
    Winter, Bernd
    Slavicek, Petr
    Hergenhahn, Uwe
    Bjorneholm, Olle
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (15) : 8661 - 8671
  • [4] Condensate dynamics with non-local interactions
    Lentz, Erik W.
    Quinn, Thomas R.
    Rosenberg, Leslie J.
    [J]. NUCLEAR PHYSICS B, 2020, 952
  • [5] Fractional dynamics with non-local scaling
    Tarasov, Vasily E.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [6] Leveraging GANs via Non-local Features
    Peng, Xuyang
    Liu, Weifeng
    Liu, Baodi
    Zhang, Kai
    Lu, Xiaoping
    Zhou, Yicong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 551 - 562
  • [7] Hybrid Non-Local Network for Abstractive Summarization
    Hao, Zepeng
    Guo, Yupu
    Gong, Cheng
    Chen, Honghui
    [J]. 2019 5TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND AUTOMATION SCIENCE (ICMEAS 2019), 2019, 692
  • [8] NON-LOCAL FIELD AND NON-LOCAL INTERACTION
    KATAYAMA, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1952, 8 (03): : 381 - 382
  • [9] Non-local effects in phase separation dynamics
    Nishiura, Y
    Ohnishi, I
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 417 - 419
  • [10] Mixed state dynamics with non-local interactions
    Lentz, Erik W.
    Lettermann, Leon
    Quinn, Thomas R.
    Rosenberg, Leslie J.
    [J]. NUCLEAR PHYSICS B, 2020, 961