Few-Shot Rotation-Invariant Aerial Image Semantic Segmentation

被引:4
|
作者
Cao, Qinglong [1 ,2 ]
Chen, Yuntian [2 ,3 ]
Ma, Chao [1 ]
Yang, Xiaokang [1 ]
机构
[1] Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
[2] Eastern Inst Technol, Ningbo Inst Digital Twin, Ningbo 315200, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
Consistent prediction; few-shot aerial semantic segmentation; rotation invariance; rotation-adaptive matching; NETWORK;
D O I
10.1109/TGRS.2023.3338699
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Few-shot aerial image semantic segmentation is a challenging task that requires precisely parsing unseen-category objects in query aerial images with limited annotated support aerial images. Formally, category prototypes would be extracted from support samples to segment query images in a pixel-to-pixel matching manner. However, aerial objects in aerial images are often distributed with arbitrary orientations, and varying orientations could cause a dramatic feature change. This unique property of aerial images renders conventional matching manner without consideration of orientations fails to activate same-category objects with different orientations. Furthermore, the oscillation of the confidence scores in existing rotation-insensitive algorithms, engendered by the striking changes of object orientations, often leads to false recognition of lower scored rotated semantic objects. To tackle these challenges, inspired by the intrinsic rotation invariance in aerial images, we propose a novel few-shot rotation-invariant aerial semantic segmentation network (FRINet) to efficiently segment aerial semantic objects with diverse orientations. Specifically, through extracting orientation-varying yet category-consistent support information, FRINet provides rotation-adaptive matching for each query feature in a feature-aggregation manner. Meanwhile, to encourage consistent predictions for aerial objects with arbitrary orientations, segmentation predictions from different orientations are supervised by the same label and further fused to obtain the final rotation-invariant prediction in a complementary manner. Moreover, aiming at providing a better solution searching space, the backbones are newly pretrained in the base category to basically boost the segmentation performance. Extensive experiments on the few-shot aerial image semantic segmentation benchmark demonstrate that the proposed FRINet achieves a new state-of-the-art performance. The code is available at https://github.com/caoql98/FRINet.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Few-Shot Aerial Image Semantic Segmentation Leveraging Pyramid Correlation Fusion
    Ao, Wei
    Zheng, Shunyi
    Meng, Yan
    Gao, Zhi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 12
  • [2] Scale-Aware Detailed Matching for Few-Shot Aerial Image Semantic Segmentation
    Yao, Xiwen
    Cao, Qinglong
    Feng, Xiaoxu
    Cheng, Gong
    Han, Junwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Survey on Image Semantic Segmentation in Dilemma of Few-Shot
    Wei, Ting
    Li, Xinlei
    Liu, Hui
    Computer Engineering and Applications, 2024, 59 (02) : 1 - 11
  • [4] Disentangled Foreground-Semantic Adapter Network for Generalized Aerial Image Few-Shot Semantic Segmentation
    Wang, Qixiong
    Yin, Jihao
    Jiang, Hongxiang
    Feng, Jiaqi
    Zhang, Guangyun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
    Wang, Kaixin
    Liew, Jun Hao
    Zou, Yingtian
    Zhou, Daquan
    Feng, Jiashi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9196 - 9205
  • [6] Generalized Few-shot Semantic Segmentation
    Tian, Zhuotao
    Lai, Xin
    Jiang, Li
    Liu, Shu
    Shu, Michelle
    Zhao, Hengshuang
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11553 - 11562
  • [7] DSMF-Net: Dual Semantic Metric Learning Fusion Network for Few-Shot Aerial Image Semantic Segmentation
    Qi, Xiyu
    Zhang, Yidan
    Wang, Lei
    Wu, Yifan
    Xin, Yi
    Chen, Zhan
    Ge, Yunping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 853 - 864
  • [8] Few-shot Segmentation and Semantic Segmentation for Underwater Imagery
    Kabir, Imran
    Shaurya, Shubham
    Maigur, Vijayalaxmi
    Thakurdesai, Nikhil
    Latnekar, Mahesh
    Raunak, Mayank
    Crandall, David
    Reza, Md Alimoor
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 11451 - 11457
  • [9] Unsupervised Semantic Segmentation with Feature Enhancement for Few-shot Image Classification
    Li, Xiang
    Xu, Zhuoming
    Xu, Qi
    Tang, Yan
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 104 - 109
  • [10] LEARNING WITH MEMORY FOR FEW-SHOT SEMANTIC SEGMENTATION
    Lu, Hongchao
    Wei, Chao
    Deng, Zhidong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 629 - 633