On Some Weighted 1-Laplacian Problem on RN with Singular Behavior at the Origin

被引:0
|
作者
Aouaoui, Sami [1 ]
Dhifet, Mariem [2 ]
机构
[1] Univ Kairouan, High Inst Appl Math & Informat Kairouan, Ave Assad Iben Fourat, Kairouan 3100, Tunisia
[2] Univ Monastir, Fac Sci Monastir, Ave Environm, Monastir 5019, Tunisia
关键词
Unbounded domain; Weighted; 1-Laplacian; Bounded variation; Approximation technique; A priori estimates; Anzelotti's pairing theory; Variational method; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.1007/s40840-023-01622-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we prove the existence of a nontrivial solution to a quasilinear elliptic problem defined on the whole Euclidean space R-N, N >= 2, and involving a weighted 1-Laplacian operator. The nonlinear term has a singular behavior at the origin. This solution is obtained through an approximation technique, which consists in considering the problem with the 1-Laplacian operator as a limit of a family of problems with the p-Laplacian operators when p -> 1(+). For that aim, a new version of Anzellotti's L-infinity-divergence-measure pairing theory is established and new arguments are used.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Existence of a radial solution to a 1-Laplacian problem in RN
    Zhou, Fen
    Shen, Zifei
    APPLIED MATHEMATICS LETTERS, 2021, 118 (118)
  • [2] Bounded variation solution to 1-Laplacian Kirchhoff type problem in RN
    Aouaoui, Sami
    Dhifet, Mariem
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 200 - 211
  • [3] Existence and concentration of positive ground states for a 1-Laplacian problem in RN
    Che, Guofeng
    Shi, Hongxia
    Wang, Zewei
    APPLIED MATHEMATICS LETTERS, 2020, 100
  • [4] Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Pimenta, Marcos T. O.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (03): : 863 - 886
  • [5] The Dirichlet problem for the 1-Laplacian with a general singular term and L1-data
    Latorre, Marta
    Oliva, Francescantonio
    Petitta, Francesco
    Segura de Leon, Sergio
    NONLINEARITY, 2021, 34 (03) : 1791 - 1816
  • [6] Existence of solutions for 1-laplacian problems with singular first order termsExistence of solutions for 1-laplacian problemsF. Balducci
    Francesco Balducci
    manuscripta mathematica, 2025, 176 (2)
  • [7] A NONLOCAL 1-LAPLACIAN PROBLEM AND MEDIAN VALUES
    Mazon, Jose M.
    Perez-Llanos, Mayte
    Rossi, Julio D.
    Toledo, Julian
    PUBLICACIONS MATEMATIQUES, 2016, 60 (01) : 27 - 53
  • [8] Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in RN
    Wang, Shi-Ying
    Chen, Peng
    Li, Lin
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 297 - 304
  • [9] 1-Laplacian type problems with strongly singular nonlinearities and gradient terms
    Giachetti, Daniela
    Oliva, Francescantonio
    Petitta, Francesco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (10)
  • [10] Elliptic problems involving the 1-Laplacian and a singular lower order term
    De Cicco, V.
    Giachetti, D.
    Segura de Leon, S.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (02): : 349 - 376