TRANSFER-LEARNING ON LAND USE AND LAND COVER CLASSIFICATION

被引:0
|
作者
Carneiro, Gabriel [1 ,2 ]
Teixeira, Ana [1 ,2 ]
Cunha, Antonio [1 ,2 ]
Sousa, Joaquim [1 ,2 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Vila Real, Portugal
[2] INESC TEC, Porto, Portugal
关键词
deep learning; land use and land cover classification; convolutional neural networks;
D O I
10.1109/IGARSS52108.2023.10282163
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this study, we evaluated the use of small pre-trained 3D Convolutional Neural Networks (CNN) on land use and land cover (LULC) slide-window-based classification. We pre-trained the small models in a dataset with origin in the Eurosat dataset and evaluated the benefits of the transfer-learning plus fine-tuning for four different regions using Sentinel-2 L1C imagery (bands of 10 and 20m of spatial resolution), comparing the results to pre-trained models and trained from scratch. The models achieved an F1 Score of between 0.69-0.80 without significative change when pre-training the model. However, for small datasets, pre-training the model improved the classification by up to 3%.
引用
收藏
页码:2918 / 2921
页数:4
相关论文
共 50 条
  • [1] INTER-REGION TRANSFER LEARNING FOR LAND USE LAND COVER CLASSIFICATION
    Siddamsetty, J.
    Stricker, M.
    Charfuelan, M.
    Nuske, M.
    Dengel, A.
    [J]. GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 881 - 888
  • [2] Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study
    Naushad, Raoof
    Kaur, Tarunpreet
    Ghaderpour, Ebrahim
    [J]. SENSORS, 2021, 21 (23)
  • [3] A Comparison of Deep Transfer Learning Methods for Land Use and Land Cover Classification
    Dastour, Hatef
    Hassan, Quazi K. K.
    [J]. SUSTAINABILITY, 2023, 15 (10)
  • [4] Transfer Learning Models for Land Cover and Land Use Classification in Remote Sensing Image
    Alem, Abebaw
    Kumar, Shailender
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [5] Joint Deep Learning for land cover and land use classification
    Zhang, Ce
    Sargent, Isabel
    Pan, Xin
    Li, Huapeng
    Gardiner, Andy
    Hare, Jonathon
    Atkinson, Peter M.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 221 : 173 - 187
  • [6] Deep and Ensemble Learning Based Land Use and Land Cover Classification
    Benbriqa, Hicham
    Abnane, Ibtissam
    Idri, Ali
    Tabiti, Khouloud
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT III, 2021, 12951 : 588 - 604
  • [7] Land Use and Land Cover Classification Meets Deep Learning: A Review
    Zhao, Shengyu
    Tu, Kaiwen
    Ye, Shutong
    Tang, Hao
    Hu, Yaocong
    Xie, Chao
    [J]. SENSORS, 2023, 23 (21)
  • [8] Review for Deep Learning in Land Use and Land Cover Remote Sensing Classification
    Feng Q.
    Niu B.
    Zhu D.
    Chen B.
    Zhang C.
    Yang J.
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (03): : 1 - 17
  • [9] Mapping of Land Use and Land Cover (LULC) Using EuroSAT and Transfer Learning
    Kunwar, Suman
    Ferdush, Jannatul
    [J]. REVUE INTERNATIONALE DE GEOMATIQUE, 2024, 33 : 1 - 13
  • [10] Interpretable Approaches for Land Use and Land Cover Classification
    Osias, Ana C. F.
    Schaefer, Mariana A. R.
    Veloso, Gustavo V.
    de Oliveira, Hugo N.
    Reis, Julio C. S.
    [J]. PROCEEDINGS OF THE 20TH BRAZILIAN SYMPOSIUM ON INFORMATIONS SYSTEMS, SBSI 2024, 2024,