High-throughput printing of combinatorial materials from aerosols

被引:49
|
作者
Zeng, Minxiang [1 ]
Du, Yipu [1 ,2 ]
Jiang, Qiang [1 ]
Kempf, Nicholas [1 ]
Wei, Chen [3 ]
Bimrose, Miles V. [1 ,4 ]
Tanvir, A. N. M. [1 ]
Xu, Hengrui [1 ]
Chen, Jiahao [1 ]
Kirsch, Dylan J. [5 ,6 ]
Martin, Joshua [5 ]
Wyatt, Brian C. [7 ]
Hayashi, Tatsunori [1 ]
Saeidi-Javash, Mortaza [1 ,8 ]
Sakaue, Hirotaka [1 ]
Anasori, Babak [7 ]
Jin, Lihua [3 ]
McMurtrey, Michael D. [9 ]
Zhang, Yanliang [1 ]
机构
[1] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
[2] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
[3] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA USA
[4] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
[5] NIST, Mat Measurement Lab, Gaithersburg, MD USA
[6] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD USA
[7] Indiana Univ Purdue Univ Indianapolis, Purdue Sch Engn & Technol, Dept Mech & Energy Engn & Integrated Nanosyst Dev, Indianapolis, IN USA
[8] Calif State Univ Long Beach, Dept Mech & Aerosp Engn, Long Beach, CA USA
[9] Idaho Natl Lab, Idaho Falls, ID USA
基金
美国国家科学基金会;
关键词
PERFORMANCE; COMPOSITE; POLYMER; FILM;
D O I
10.1038/s41586-023-05898-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces(1). Whereas traditional combinatorial deposition methods can generate material libraries(2,3), these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid-liquid or solid-solid phases(4-6). We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.
引用
收藏
页码:292 / +
页数:9
相关论文
共 50 条
  • [1] High-throughput printing of combinatorial materials from aerosols
    Minxiang Zeng
    Yipu Du
    Qiang Jiang
    Nicholas Kempf
    Chen Wei
    Miles V. Bimrose
    A. N. M. Tanvir
    Hengrui Xu
    Jiahao Chen
    Dylan J. Kirsch
    Joshua Martin
    Brian C. Wyatt
    Tatsunori Hayashi
    Mortaza Saeidi-Javash
    Hirotaka Sakaue
    Babak Anasori
    Lihua Jin
    Michael D. McMurtrey
    Yanliang Zhang
    [J]. Nature, 2023, 617 : 292 - 298
  • [2] Combinatorial and high-throughput materials research
    Potyrailo, RA
    Takeuchi, I
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (01)
  • [3] Combinatorial and high-throughput materials science
    Maier, Wilhelm F.
    Stoewe, Klaus
    Sieg, Simone
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (32) : 6016 - 6067
  • [4] Experimental strategies for combinatorial and high-throughput materials development
    Cawse, JN
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (03) : 213 - 221
  • [5] A flexible database for combinatorial and high-throughput materials science
    Frantzen, A
    Sanders, D
    Scheidtmann, J
    Simon, U
    Maier, WF
    [J]. QSAR & COMBINATORIAL SCIENCE, 2005, 24 (01): : 22 - 28
  • [6] Combinatorial electrode array for high-throughput evaluation of combinatorial library for electrode materials
    Takada, K
    Fujimoto, K
    Sasaki, T
    Watanabe, M
    [J]. APPLIED SURFACE SCIENCE, 2004, 223 (1-3) : 210 - 213
  • [7] Gordon Conference Focused on Combinatorial and High-Throughput Materials Science
    James N. Cawse
    [J]. MRS Bulletin, 2005, 30 (11) : 896 - 896
  • [8] MEMS tools for combinatorial materials processing and high-throughput characterization
    Ludwig, A
    Cao, J
    Brugger, J
    Takeuchi, I
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (01) : 111 - 118
  • [9] Role of high-throughput characterization tools in combinatorial materials science
    Potyrailo, RA
    Takeuchi, I
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (01) : 1 - 4
  • [10] High-Throughput Electrochemical Characterization of Binary Combinatorial Materials Chip
    Lin, Yutong
    Yang, Yang
    Pang, Xiaolu
    Qiao, Lijie
    Su, Yanjing
    Gao, Kewei
    [J]. Xiyou Jinshu/Chinese Journal of Rare Metals, 2020, 44 (06): : 561 - 570