Resolution-enhanced X-ray fluorescence microscopy via deep residual networks

被引:9
|
作者
Wu, Longlong [1 ,2 ]
Bak, Seongmin [3 ]
Shin, Youngho [4 ]
Chu, Yong S. [3 ]
Yoo, Shinjae [1 ]
Robinson, Ian K. [2 ,5 ]
Huang, Xiaojing [3 ]
机构
[1] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[2] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[4] Argonne Natl Lab, Appl Mat Div, Mat Engn Res Facil, Lemont, IL 60439 USA
[5] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
HIGH-ENERGY; CATHODE MATERIAL;
D O I
10.1038/s41524-023-00995-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multimodal hard X-ray scanning probe microscopy has been extensively used to study functional materials providing multiple contrast mechanisms. For instance, combining ptychography with X-ray fluorescence (XRF) microscopy reveals structural and chemical properties simultaneously. While ptychography can achieve diffraction-limited spatial resolution, the resolution of XRF is limited by the X-ray probe size. Here, we develop a machine learning (ML) model to overcome this problem by decoupling the impact of the X-ray probe from the XRF signal. The enhanced spatial resolution was observed for both simulated and experimental XRF data, showing superior performance over the state-of-the-art scanning XRF method with different nano-sized X-ray probes. Enhanced spatial resolutions were also observed for the accompanying XRF tomography reconstructions. Using this probe profile deconvolution with the proposed ML solution to enhance the spatial resolution of XRF microscopy will be broadly applicable across both functional materials and biological imaging with XRF and other related application areas.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Resolution-enhanced X-ray fluorescence microscopy via deep residual networks
    Longlong Wu
    Seongmin Bak
    Youngho Shin
    Yong S. Chu
    Shinjae Yoo
    Ian K. Robinson
    Xiaojing Huang
    npj Computational Materials, 9
  • [2] Resolution-enhanced x-ray ghost imaging with polycapillary optics
    Li, Huiquan
    Hou, Wanting
    Ye, Zhiyuan
    Yuan, Tianyu
    Shao, Shangkun
    Xiong, Jun
    Sun, Tianxi
    Sun, Xuepeng
    APPLIED PHYSICS LETTERS, 2023, 123 (14)
  • [3] Resolution-Enhanced Single-Pixel Fluorescence Microscopy
    Ordonez, L.
    Lenz, A. J. M.
    Yoneda, N.
    Kumar, M.
    Lancis, J.
    Matoba, O.
    Tajahuerce, E.
    UNCONVENTIONAL OPTICAL IMAGING IV, 2024, 12996
  • [4] Deep learning enhanced super-resolution x-ray fluorescence microscopy by a dual-branch network
    Zheng, Xiaoyin
    Kankanallu, Varun R.
    Lo, Chang-An
    Pattammattel, Ajith
    Chu, Yong
    Chen-Wiegart, Yu-Chen Karen
    Huang, Xiaojing
    OPTICA, 2024, 11 (02): : 146 - 154
  • [5] Resolution-enhanced Digital Epiluminescence Microscopy Using Deep Computational Optics
    Kabiljagic, Dino
    Wong, Alexander
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XVII, 2019, 10881
  • [7] SCANNING LUMINESCENCE X-RAY MICROSCOPY - IMAGING FLUORESCENCE DYES AT SUBOPTICAL RESOLUTION
    JACOBSEN, C
    LINDAAS, S
    WILLIAMS, S
    ZHANG, X
    JOURNAL OF MICROSCOPY-OXFORD, 1993, 172 : 121 - 129
  • [8] Resolution of x-ray resist as a recording medium for x-ray microscopy
    Kanayama, T.
    Tomie, T.
    Shimizu, H.
    Majima, T.
    Denshi Gijutsu Sogo Kenkyusho Iho/Bulletin of the Electrotechnical Laboratory, 1991, 55 (07): : 34 - 43
  • [9] Resolution-enhanced SOFI via structured illumination
    Zhao, Guangyuan
    Zheng, Cheng
    Kuang, Cuifang
    Liu, Xu
    OPTICS LETTERS, 2017, 42 (19) : 3956 - 3959
  • [10] X-ray microscopy makes for super resolution
    Palmer, D. Jason
    MATERIALS TODAY, 2008, 11 (09) : 10 - 10