FOURTH ORDER HARDY-SOBOLEV EQUATIONS: SINGULARITY AND DOUBLY CRITICAL EXPONENT

被引:0
|
作者
Ali, Hussein Cheikh [1 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
关键词
Biharmonic equations; Rellich inequality; Navier boundary condition; singular problem; critical exponents; fourth order equation; BIHARMONIC OPERATOR;
D O I
10.3934/cpaa.2023112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In dimension N >= 5, and for 0 < s < 4 with gamma is an element of R, we study the existence of nontrivial weak solutions for the doubly critical problem D(2)u - gamma/vertical bar x vertical bar(4) u = vertical bar u vertical bar 2(0)(star-2)u + vertical bar u vertical bar 2(s)(star-2)u/vertical bar x vertical bar(s) in R-+(N), u = Delta u = 0 on partial derivative R-+(N), where 2(s)(star) := 2(N-s)/N-4 is the critical Hardy-Sobolev exponent. For N >= 8 and 0 < gamma < (N-2- 4)(2)/16, we show the existence of nontrivial solution using the Mountain-Pass theorem by Ambrosetti-Rabinowitz. The method used is based on the existence of extremals for certain Hardy-Sobolev embeddings that we prove in this paper.
引用
收藏
页码:3267 / 3294
页数:28
相关论文
共 50 条