Quantitative pharmacokinetic parameter Ktrans map assists in regional segmentation of nasopharyngeal carcinoma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)

被引:6
|
作者
Huang, Junhui [1 ,2 ]
Yang, Shangpo [3 ,4 ]
Zou, Liyan [3 ,4 ]
Chen, Yingying [3 ,4 ]
Yang, Long [1 ]
Yao, Bingyu [1 ]
Huang, Zhenxing [1 ]
Zhong, Yihong [3 ,4 ]
Liu, Zhou [3 ,4 ]
Zhang, Na [1 ,5 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen, Guangdong, Peoples R China
[2] Army Engn Univ PLA, Coll Commun Engn, Nanjing 210000, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Radiol, Shenzhen 518116, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Shenzhen Hosp, Shenzhen 518116, Peoples R China
[5] Chinese Acad Sci, Key Lab Biomed Imaging Sci & Syst, Shenzhen, Peoples R China
关键词
Nasopharyngeal carcinoma; DCE-MRI; Quantitative parameters; Image segmentation; Deep learning;
D O I
10.1016/j.bspc.2023.105433
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate segmentation of nasopharyngeal carcinoma (NPC) lesion areas from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) facilitates subsequent diagnostic and prognostic workups. However, in previous studies, little consideration has been given to incorporating the pharmacokinetic feature Ktrans as auxiliary information for segmenting NPC in DCE-MRI. Therefore, this paper proposes the use of a pharmacokinetic extended Tofts and Kermode (ETK) model to obtain the Ktrans feature from DCE-MRI and combine it with MRI images for nasopharyngeal tumor segmentation. Additionally, this paper proposes a multi-input branch residual U-Net (MBRU-Net) model that effectively fuses DCE-MRI features and Ktrans features. The effectiveness of the multibranch network is validated by comparing MBRU-Net with ResU-Net with DCE-MRI + Ktrans data. Additionally, different models are trained with DCE-MRI and DCE-MRI + Ktrans data separately and compared to validate the effectiveness of multimodal data using the Dice coefficient. Our proposed MBRU-Net achieves the best Dice in this study (67.39 +/- 15.79%), higher than ResU-Net's Dice (65.57 +/- 17.52) based on DCE-MRI and Ktrans data. U-Net, SegNet, R2U-Net, and ResU-Net achieve better results in terms of segmenting tumor regions with DCE-MRI + Ktrans data than those of the corresponding models with DCE-MRI data alone, where U-Net has the best performance (DCE-MRI + Ktrans: DCE-MRI = 66.31 +/- 17.80%: 61.10 +/- 24.14%). The results show that it is beneficial to add a pharmacokinetic parametric (Ktrans) map as prior information to the conventional anatomical MRI-based segmentation task, and multibranch network structures perform better than single-branch network structures in terms of NPC segmentation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dynamic contrast-enhanced MRI of nasopharyngeal carcinoma: correlation of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters with hypoxia-inducible factor 1α expression and tumor grade/stage
    Liu, Lan
    Hu, Liping
    Zeng, Qiao
    Peng, Dexin
    Chen, Zhiping
    Huang, Chuansheng
    Liu, Zhiliang
    Wen, Qingyi
    Zou, Fei
    Yan, Lan
    [J]. ANNALS OF PALLIATIVE MEDICINE, 2021, 10 (02) : 2238 - 2253
  • [2] Physiologic pancreatic cancer imaging using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
    Fischer, Laura E.
    Schabel, Matthias
    Foster, Bryan
    Thomas, Charles R., Jr.
    Rooney, William
    Sheppard, Brett C.
    Gilbert, Erin W.
    [J]. CANCER RESEARCH, 2016, 76
  • [3] Temporomandibular joint (TMJ) pain revisited with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
    Tasali, N.
    Cubuk, R.
    Aricak, M.
    Ozarar, M.
    Saydam, B.
    Nur, H.
    Tuncbilek, N.
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (03) : 603 - 608
  • [4] Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the detection of prostate cancer: A pilot study
    Isebaert, S.
    De Keyzer, F.
    Haustermans, K.
    Roskams, T.
    Van Poppel, H.
    Oyen, R.
    [J]. ACTA CLINICA BELGICA, 2008, 63 (02): : 126 - 126
  • [5] Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the prediction of non-union consolidation
    Fischer, Christian
    Nissen, Mareike
    Schmidmaier, Gerhard
    Bruckner, Thomas
    Kauczor, Hans-Ulrich
    Weber, Marc-Andre
    [J]. INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2017, 48 (02): : 357 - 363
  • [6] Variability analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of hepatocellular carcinoma (HCC)
    Reddy, Kaunteya
    Tennant, Bud
    Buitrago, Sandra
    Hutson, Alan
    Ashton, Edward
    Iyer, Renuka
    [J]. CANCER RESEARCH, 2012, 72
  • [7] The Value of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in the Differentiation of Pseudoprogression and Recurrence of Intracranial Gliomas
    Jing, Hui
    Yan, Xuhong
    Li, Junjie
    Qin, Danlei
    Zhang, Ning
    Zhang, Hui
    [J]. CONTRAST MEDIA & MOLECULAR IMAGING, 2022, 2022
  • [8] Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict efficacy of axitinib for treatment of advanced hepatocellular carcinoma (HCC).
    Huang, Po-Hsiang
    Chen, Bang-Bin
    Lin, Zhong-Zhe
    Shen, Ying-Chun
    Chao, Yee
    Shao, Yu Yun
    Cheng, Ann-Lii
    Hsu, Chiun
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
  • [9] Application of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) combined with magnetic resonance spectroscopy (MRS)in prostate cancer diagnosis
    Yakun He
    Min Wang
    Heping Deng
    Jin Ren
    [J]. Oncology and Translational Medicine, 2021, 7 (01) : 31 - 34
  • [10] Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging of bone marrow in healthy individuals
    Hillengass, Jens
    Stieltjes, Bram
    Baeuerle, Tobias
    McCianahan, Fabienne
    Heise, Christiane
    Hielscher, Thomas
    Wagner-Gund, Barbara
    Habetler, Verena
    Goldschmidt, Hartmut
    Schlemmer, Heinz-Peter
    Delorme, Stefan
    Zechmann, Christian M.
    [J]. ACTA RADIOLOGICA, 2011, 52 (03) : 324 - 330