Semantic Linear Genetic Programming for Symbolic Regression

被引:24
|
作者
Huang, Zhixing [1 ]
Mei, Yi [1 ]
Zhong, Jinghui [2 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6012, New Zealand
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Genetic programming; Genetics; Syntactics; Biological cells; Behavioral sciences; Task analysis; Genetic programming (GP); mutate-and-divide propagation (MDP); symbolic regression (SR); CROSSOVER;
D O I
10.1109/TCYB.2022.3181461
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Symbolic regression (SR) is an important problem with many applications, such as automatic programming tasks and data mining. Genetic programming (GP) is a commonly used technique for SR. In the past decade, a branch of GP that utilizes the program behavior to guide the search, called semantic GP (SGP), has achieved great success in solving SR problems. However, existing SGP methods only focus on the tree-based chromosome representation and usually encounter the bloat issue and unsatisfactory generalization ability. To address these issues, we propose a new semantic linear GP (SLGP) algorithm. In SLGP, we design a new chromosome representation to encode the programs and semantic information in a linear fashion. To utilize the semantic information more effectively, we further propose a novel semantic genetic operator, namely, mutate-and-divide propagation, to recursively propagate the semantic error within the linear program. The empirical results show that the proposed method has better training and test errors than the state-of-the-art algorithms in solving SR problems and can achieve a much smaller program size.
引用
收藏
页码:1321 / 1334
页数:14
相关论文
共 50 条
  • [1] Memetic Semantic Genetic Programming for Symbolic Regression
    Leite, Alessandro
    Schoenauer, Marc
    [J]. GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 : 198 - 212
  • [2] Semantic schema based genetic programming for symbolic regression
    Zojaji, Zahra
    Ebadzadeh, Mohammad Mehdi
    Nasiri, Hamid
    [J]. APPLIED SOFT COMPUTING, 2022, 122
  • [3] Linear Scaling with and within Semantic Backpropagation-based Genetic Programming for Symbolic Regression
    Virgolin, Marco
    Alderliesten, Tanja
    Bosman, Peter A. N.
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1084 - 1092
  • [4] Investigation of Linear Genetic Programming Techniques for Symbolic Regression
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    [J]. 2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 146 - 151
  • [5] Solving the Exponential Growth of Symbolic Regression Trees in Geometric Semantic Genetic Programming
    Martins, Joao Francisco B. S.
    Oliveira, Luiz Otavio V. B.
    Miranda, Luis F.
    Casadei, Felipe
    Pappa, Gisele L.
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1151 - 1158
  • [6] Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis
    Pawlak, Tomasz P.
    Krawiec, Krzysztof
    [J]. EVOLUTIONARY COMPUTATION, 2018, 26 (02) : 177 - 212
  • [7] LGP-VEC: A Vectorial Linear Genetic Programming for Symbolic Regression
    Gligorovski, Nikola
    Zhong, Jinghui
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 579 - 582
  • [8] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    [J]. GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [9] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [10] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    [J]. APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469