Flexible thermoelectric energy harvesting system based on polymer composites

被引:8
|
作者
Rodrigues-Marinho, T. [1 ,2 ]
Correia, V. [3 ,4 ]
Tubio, C. -R. [6 ]
Ares-Pernas, A. [5 ]
Abad, M. -J. [5 ]
Lanceros-Mendez, S. [1 ,2 ,6 ,7 ]
Costa, P. [1 ,2 ,8 ]
机构
[1] Univ Minho, Phys Ctr Minho & Porto Univ CF UM UP, P-4710057 Braga, Portugal
[2] Univ Minho, LaPMET Lab Phys Mat & Emergent Technol, P-4710057 Braga, Portugal
[3] Univ Minho, Ctr MicroElectromechan Syst CMEMS, Campus Azurem, P-4800058 Guimaraes, Portugal
[4] Univ Minho, LABBELS Associate Lab Biotechnol & Bioengn & Micro, Braga, Portugal
[5] Univ A Coruna, Campus Ind Ferrol, CITENI, Grp Polimeros, Ferrol 15403, Spain
[6] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[7] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
[8] Univ Minho, Inst Polymers & Composites, IPC, P-4800058 Guimaraes, Portugal
关键词
Energy harvesting; Polymers matrices; Ceramic; Printing materials; Easy processing; CARBON NANOTUBE TYPE; ELECTRICAL-CONDUCTIVITY; FLUORIDE COMPOSITE; PVDF; FILM;
D O I
10.1016/j.cej.2023.145297
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flexible and easy processing lightweight thermoelectric materials for energy harvesting applications have shown an increasing interest. Thermoplastic polyvinylidene fluoride (PVDF) and elastomer styrene-ethylene/butylenestyrene (SEBS) polymers reinforced with thermoelectric ceramics, including bismuth sulfide (Bi2S3), bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), and electrically conductive carbon nanotubes (CNT) have been developed, tailoring their thermal and electrical properties for thermoelectric device applications. The Seebeck coefficient of the composites increases with thermoelectric ceramic filler content for semicrystalline PVDF composites, slightly decreasing for amorphous SEBS composite. Thermoelectric power factor and figure-ofmerit in the polymer composites increases up to 9 orders of magnitude with respect to the pristine polymer, up to a maximum value of 10 3 mu W/(m center dot K-2) and 10 6, respectively, for the PVDF/CNT/Bi2Te3 composite. A device composed by 2 printable p-n thermocouples based on PVDF/50Bi(2)S(3) and PVDF/50Bi(2)Te(3) can generate power in the order of the nW and charge a capacitor with 5 V. Theoretical modeling allows to evaluate different thermoelectric configurations, the effect of the number of thermocouples and the influence of the temperature gradient on device performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Liquid Metal Composites for Flexible Thermoelectric Energy Harvesting
    Malakooti, Mohammad H.
    Zadan, Mason
    Kazem, Navid
    Majidi, Carmel
    [J]. BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS XV, 2021, 11589
  • [2] Fabrication of Flexible Thermoelectric Energy Harvesting System
    Wu, Guangxi
    Neff, Ferin
    Yu, Xiong
    [J]. EARTH AND SPACE 2018: ENGINEERING FOR EXTREME ENVIRONMENTS, 2018, : 1203 - 1215
  • [3] Stretchable and flexible thermoelectric polymer composites
    Slobodian, P.
    Riha, P.
    Matyas, J.
    Olejnik, R.
    [J]. APPLIED NANOTECHNOLOGY AND NANOSCIENCE INTERNATIONAL CONFERENCE 2017 (ANNIC 2017), 2018, 987
  • [4] Flexible piezoelectric polymer-based energy harvesting system for roadway applications
    Jung, Inki
    Shin, Youn-Hwan
    Kim, Sangtae
    Choi, Ji-young
    Kang, Chong-Yun
    [J]. APPLIED ENERGY, 2017, 197 : 222 - 229
  • [5] Flexible Thermoelectric Polymer Composites Based on a Carbon Nanotubes Forest
    Yusupov, Khabib
    Stumpf, Steffi
    You, Shujie
    Bogach, Aleksei
    Martinez, Patricia M.
    Zakhidov, Anvar
    Schubert, Ulrich S.
    Khovaylo, Vladimir
    Vomiero, Alberto
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (40)
  • [6] Flexible thermoelectric foil for wearable energy harvesting
    Wan, Chunlei
    Tian, Ruoming
    Azizi, Azrina Binti
    Huang, Yujia
    Wei, Qingshuo
    Sasai, Ryo
    Wasusate, Soontornchaiyakul
    Ishida, Takao
    Koumoto, Kunihito
    [J]. NANO ENERGY, 2016, 30 : 840 - 845
  • [7] Advancing Flexible Thermoelectric Devices with Polymer Composites
    Liu, Zhuoxin
    Chen, Guangming
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (07)
  • [8] Thermoelectric energy harvesting using cement-based composites: a review
    Singh, V. P.
    Kumar, M.
    Srivastava, R. S.
    Vaish, R.
    [J]. MATERIALS TODAY ENERGY, 2021, 21
  • [9] A polymer-based textile thermoelectric generator for wearable energy harvesting
    Lund, Anja
    Tian, Yuan
    Darabi, Sozan
    Muller, Christian
    [J]. JOURNAL OF POWER SOURCES, 2020, 480
  • [10] Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics
    Zhang, Yong
    Jeong, Chang Kyu
    Wang, Jianjun
    Sun, Huajun
    Li, Fei
    Zhang, Guangzu
    Chen, Long-Qing
    Zhang, Shujun
    Chen, Wen
    Wang, Qing
    [J]. NANO ENERGY, 2018, 50 : 35 - 42