Kummer quartic double solids

被引:1
|
作者
Cheltsov, Ivan [1 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
关键词
Quartic double solid; Kummer surface; Equivariant birational rigidity; Fano variety; FINITE SUBGROUPS; K3; SURFACES; AUTOMORPHISMS; CURVES; THREEFOLDS; BUNDLES;
D O I
10.1007/s12215-022-00767-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study equivariant birational geometry of (rational) quartic double solids ramified over (singular) Kummer surfaces.
引用
收藏
页码:1993 / 2023
页数:31
相关论文
共 50 条
  • [1] Kummer quartic double solids
    Ivan Cheltsov
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1993 - 2023
  • [2] Factorial quartic double solids
    Hong, Kyusik
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2015, 25 (07) : 1179 - 1186
  • [3] Quartic double solids with icosahedral symmetry
    Cheltsov, Ivan
    Przyjalkowski, Victor
    Shramov, Constantin
    EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (01) : 96 - 119
  • [4] Quartic double solids with ordinary singularities
    M. I. Grooten
    J. H. M. Steenbrink
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 : 104 - 112
  • [5] TORELLI THEOREM FOR QUARTIC DOUBLE SOLIDS
    DEBARRE, O
    COMPOSITIO MATHEMATICA, 1990, 73 (02) : 161 - 187
  • [6] Tangent conics at quartic surfaces and conics in quartic double solids
    Hadan, I
    MATHEMATISCHE NACHRICHTEN, 2000, 210 : 127 - 162
  • [7] Quartic double solids with ordinary singularities
    Grooten, M. I.
    Steenbrink, J. H. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 267 (01) : 104 - 112
  • [8] WHICH QUARTIC DOUBLE SOLIDS ARE RATIONAL?
    Cheltsov, Ivan
    Przyjalkowski, Victor
    Shramov, Constantin
    JOURNAL OF ALGEBRAIC GEOMETRY, 2019, 28 (02) : 201 - 243
  • [9] Another description of certain quartic double solids
    Kreussler, B
    MATHEMATISCHE NACHRICHTEN, 2000, 212 : 91 - 100
  • [10] On nodal Enriques surfaces and quartic double solids
    Ingalls, Colin
    Kuznetsov, Alexander
    MATHEMATISCHE ANNALEN, 2015, 361 (1-2) : 107 - 133