Ostrowski like inequalities for (?, ?, ?, ?)-convex functions via fuzzy Riemann integrals

被引:1
|
作者
Mehmood, Faraz [1 ,2 ]
Hassan, Ali [3 ]
Idrees, Atif [4 ]
Nawaz, Faisal [2 ]
机构
[1] Samarkand State Univ, Dept Math, Samarkand 140104, Uzbekistan
[2] Dawood Univ Engn & Technol, Dept Math, Karachi 74800, Pakistan
[3] Shah Abdul Latif Univ Khairpur, Dept Math, Khairpur, Pakistan
[4] DHA Suffa Univ, Dept Basic Sci, Karachi 75500, Pakistan
来源
关键词
Ostrowski inequality; convex functions; fuzzy set; power mean inequality; Ho?lder?s inequality;
D O I
10.22436/jmcs.031.02.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present first time the generalised notion of (alpha, beta,gamma, delta)-convex (concave) functions in mixed kind, which is the generalisation of functions: convex (concave), P-convex (concave), quasi-convex (concave), s-convex (concave) in 1st kind, s-convex (concave) in 2nd kind, (s,r)-convex (concave) in mixed kind, (alpha, beta)-convex (concave) in 1st kind, (alpha, beta)-convex (concave) in 2nd kind. Our aim is to establish Ostrowski like inequalities via fuzzy Riemann integrals for (alpha, beta, gamma, delta)-convex functions in mixed kind by applying several techniques involving power mean inequality and Ho center dot lder's inequality. Moreover, we would obtain various consequences with respect to the convexity of function as corollaries and remarks.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 50 条
  • [1] Fuzzy Ostrowski type inequalities via φ-λ-convex functions
    Hassan, Ali
    Khan, Asif Raza
    Mehmood, Faraz
    Khan, Maria
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (03): : 224 - 235
  • [2] SOME OSTROWSKI TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR h-CONVEX FUNCTIONS
    Liu, Wenjun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (05) : 998 - 1004
  • [3] New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals
    Demir, Senol
    Maden, Selahattin
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (03): : 1311 - 1324
  • [4] Ostrowski type inequalities for k-β-convex functions via Riemann-Liouville k-fractional integrals
    Lakhal, Fahim
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1561 - 1578
  • [5] Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals
    Muhammad Bilal Khan
    Muhammad Aslam Noor
    Pshtiwan Othman Mohammed
    Juan L. G. Guirao
    Khalida Inayat Noor
    [J]. International Journal of Computational Intelligence Systems, 14
  • [6] Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Mohammed, Pshtiwan Othman
    Guirao, Juan L. G.
    Noor, Khalida Inayat
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [7] Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals
    Khan, Muhammad Bilal
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Baleanu, Dumitru
    Jawa, Taghreed M.
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 1507 - 1535
  • [9] Ostrowski Type Inequalities for s-Convex Functions via q-Integrals
    Khan, Khuram Ali
    Ditta, Allah
    Nosheen, Ammara
    Awan, Khalid Mahmood
    Mabela, Rostin Matendo
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [10] Ostrowski type inequalities for functions whose derivatives are strongly (α, m)-convex via k-Riemann-Liouville fractional integrals
    Kermausuor, Seth
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (01): : 25 - 34