Inference of social cognition in schizophrenia patients with neurocognitive domains and neurocognitive tests using automated machine learning

被引:0
|
作者
Lin, Eugene [1 ,2 ,3 ]
Lin, Chieh-Hsin [3 ,4 ,5 ]
Lane, Hsien-Yuan [3 ,6 ,7 ,8 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect & Comp Engn, Seattle, WA 98195 USA
[3] China Med Univ Taiwan, Grad Inst Biomed Sci, Taichung, Taiwan
[4] Chang Gung Univ, Coll Med, Kaohsiung Chang Gung Mem Hosp, Dept Psychiat, Kaohsiung, Taiwan
[5] Chang Gung Univ, Sch Med, Taoyuan, Taiwan
[6] China Med Univ Hosp, Dept Psychiat, Taichung, Taiwan
[7] China Med Univ Hosp, Brain Dis Res Ctr, Taichung, Taiwan
[8] Asia Univ, Coll Med & Hlth Sci, Dept Psychol, Taichung, Taiwan
关键词
Automated machine learning; Neurocognitive domain; Neurocognitive test; Schizophrenia; Social cognition; EMOTIONAL INTELLIGENCE; CLINICAL-TRIALS; DOUBLE-BLIND; GENE-GENE; DEFICIT; PHARMACOGENOMICS; BENZOATE; HEALTH;
D O I
10.1016/j.ajp.2023.103866
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Aim: It has been suggested that single neurocognitive domain or neurocognitive test can be used to determine the overall cognitive function in schizophrenia using machine learning algorithms. It is unknown whether social cognition in schizophrenia patients can be estimated with machine learning based on neurocognitive domains or neurocognitive tests.Methods: To predict social cognition in schizophrenia, we applied an automated machine learning (AutoML) framework resulting from the analysis of predictive factors such as six neurocognitive domain scores and nine neurocognitive test scores of 380 schizophrenia patients in the Taiwanese population. Four clinical parameters (i. e., age, gender, subgroup, and education) were also used as predictive factors. We utilized an AutoML framework called Tree-based Pipeline Optimization Tool (TPOT) to generate predictive pipelines automatically.Results: The analysis revealed that all neurocognitive domains and tests except the reasoning and problem solving domain/test showed significant associations with social cognition. In addition, a TPOT-generated pipeline can best predict social cognition in schizophrenia using seven predictive factors, including five neurocognitive domains (i.e., speed of processing, sustained attention, working memory, verbal learning and memory, and visual learning and memory) and two clinical parameters (i.e., age and gender). This predictive pipeline consists of machine learning algorithms such as function transformers, an approximate feature map, independent component analysis, and linear regression. Conclusion: The study indicates that an AutoML framework such as TPOT may provide a promising way to produce truly effective machine learning pipelines for predicting social cognition in schizophrenia using neurocognitive domains and/or neurocognitive tests.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Neurocognitive deficit and social cognition in schizophrenia
    Rychkova, O. V.
    Gurevich, G. L.
    [J]. ZHURNAL NEVROLOGII I PSIKHIATRII IMENI S S KORSAKOVA, 2012, 112 (11) : 13 - +
  • [2] Social cognition and neurocognitive deficits in schizophrenia
    Lancaster, RS
    Evans, JD
    Bond, GR
    Lysaker, PH
    [J]. JOURNAL OF NERVOUS AND MENTAL DISEASE, 2003, 191 (05) : 295 - 299
  • [3] Neurocognitive predictors of social cognition in remitted schizophrenia
    Mehta, Urvakhsh Meherwan
    Bhagyavathi, Haralahalli D.
    Thirthalli, Jagadisha
    Kumar, Keshav J.
    Gangadhar, Bangalore N.
    [J]. PSYCHIATRY RESEARCH, 2014, 219 (02) : 268 - 274
  • [4] Neurocognitive and Metacognitive Profiles of Intact Social Cognition in Prolonged Schizophrenia
    James, Alison V.
    Johannesen, Jason K.
    Lysaker, Paul H.
    [J]. JOURNAL OF NERVOUS AND MENTAL DISEASE, 2018, 206 (12) : 907 - 912
  • [5] Social cognition and neurocognitive deficits in first-episode schizophrenia
    Bliksted, Vibeke
    Fagerlund, Birgitte
    Weed, Ethan
    Frith, Chris
    Videbech, Poul
    [J]. SCHIZOPHRENIA RESEARCH, 2014, 153 (1-3) : 9 - 17
  • [6] Neurocognitive, social and clinical correlates of two domains of hopelessness in schizophrenia
    Lysaker, PH
    Davis, LW
    Hunter, NL
    [J]. SCHIZOPHRENIA RESEARCH, 2004, 70 (2-3) : 277 - 285
  • [7] Neurocognitive and social cognition deficits in patients with anorexia nervosa
    Kulakowska, Dorota
    Biernacka, Katarzyna
    Wilkos, Ewelina
    Rybakowski, Filip
    Kucharska-Pietura, Katarzyna
    [J]. PSYCHIATRIA POLSKA, 2014, 48 (03) : 465 - 475
  • [8] Social skills and neurocognitive individualized training in patients with schizophrenia
    Piegari, G.
    Galderisi, S.
    Mucci, A.
    Acerra, A.
    Luciano, L.
    Santucci, E.
    Volpe, M.
    Valente, A.
    Rabasca, A. F.
    Mastantuono, P.
    Maj, M.
    [J]. EUROPEAN PSYCHIATRY, 2008, 23 : S137 - S138
  • [9] Neurocognitive predictors of social cognition in subjects with schizophrenia and their first-degree relatives
    Mucci, A.
    Galderisi, S.
    Rocca, P.
    Rossi, A.
    Bertolino, A.
    Maj, M.
    [J]. EUROPEAN PSYCHIATRY, 2017, 41 : S40 - S40
  • [10] Neurocognitive Impairment and Social Cognition in Parkinson's Disease Patients
    Doskas, Triantafyllos
    Vadikolias, Konstantinos
    Ntoskas, Konstantinos
    Vavougios, George D.
    Tsiptsios, Dimitrios
    Stamati, Polyxeni
    Liampas, Ioannis
    Siokas, Vasileios
    Messinis, Lambros
    Nasios, Grigorios
    Dardiotis, Efthimios
    [J]. NEUROLOGY INTERNATIONAL, 2024, 16 (02): : 432 - 449