mStrain: strain-level identification of Yersinia pestis using metagenomic data

被引:0
|
作者
Qian, Xiuwei [1 ,2 ]
Wu, Yarong [2 ]
Zuo, Xiujuan [1 ,2 ]
Peng, Xin [2 ]
Guo, Yan [2 ]
Yang, Ruifu [2 ]
Zhang, Xianglilan [1 ,2 ,3 ]
Cui, Yujun [1 ,2 ,3 ]
机构
[1] Anhui Med Univ, Sch Basic Med Sci, Hefei 230032, Peoples R China
[2] Beijing Inst Microbiol & Epidemiol, State Key Lab Pathogen & Biosecur, Beijing 100071, Peoples R China
[3] Anhui Med Univ, Sch Basic Med Sci, 81 Meishan Rd, Hefei City 230032, Anhui Province, Peoples R China
来源
BIOINFORMATICS ADVANCES | 2023年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
D O I
10.1093/bioadv/vbad115
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation High-resolution target pathogen detection using metagenomic sequencing data represents a major challenge due to the low concentration of target pathogens in samples. We introduced mStrain, a novel Yesinia pestis strain/lineage-level identification tool that utilizes metagenomic data. mStrain successfully identified Y. pestis at the strain/lineage level by extracting sufficient information regarding single-nucleotide polymorphisms (SNPs), which can therefore be an effective tool for identification and source tracking of Y. pestis based on metagenomic data during a plague outbreak.Strain-level identification Assigning the reads in the metagenomic sequencing data to an exactly known or most closely representative Y. pestis strain.Lineage-level identification Assigning the reads in the metagenomic sequencing data to a specific lineage on the phylogenetic tree.canoSNPs The unique and typical SNPs present in all representative strains.Ancestor/derived state An SNP is defined as the ancestor state when consistent with the allele of Yersinia pseudotuberculosis strain IP32953; otherwise, the SNP is defined as the derived state.Availability and implementation The code for running mStrain, the test dataset, and instructions for running the code can be found at the following GitHub repository: https://github.com/xwqian1123/mStrain.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] An integrated strain-level analytic pipeline utilizing longitudinal metagenomic data
    Zhou, Boyan
    Wang, Chan
    Putzel, Gregory
    Hu, Jiyuan
    Liu, Menghan
    Wu, Fen
    Chen, Yu
    Pironti, Alejandro
    Li, Huilin
    MICROBIOLOGY SPECTRUM, 2024, 12 (11):
  • [2] StrainFLAIR: strain-level profiling of metagenomic samples using variation graphs
    Da Silva, Kevin
    Pons, Nicolas
    Berland, Magali
    Onate, Florian Plaza
    Almeida, Mathieu
    Peterlongo, Pierre
    PEERJ, 2021, 9
  • [3] Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences
    Llontop, Marco E. Mechan
    Sharma, Parul
    Flores, Marcela Aguilera
    Yang, Shu
    Pollok, Jill
    Tian, Long
    Huang, Chenjie
    Rideout, Steve
    Heath, Lenwood S.
    Li, Song
    Vinatzer, Boris A.
    PHYTOPATHOLOGY, 2020, 110 (04) : 768 - 779
  • [4] Microbiology: the road to strain-level identification
    Marx, Vivien
    NATURE METHODS, 2016, 13 (05) : 401 - 404
  • [5] Microbiology: the road to strain-level identification
    Vivien Marx
    Nature Methods, 2016, 13 : 401 - 404
  • [6] Integration of Genomic and Quantitative Strain-level Metagenomic Profiles by Using qRRS in the Sweetpotato Phyllosphere
    Adams, Alison
    Voothuluru, Priya
    Kristy, Brandon
    Kirby, Harper
    Wadl, Phil A.
    Yencho, G. Craig
    Olukolu, Bode
    HORTSCIENCE, 2022, 57 (09) : S278 - S278
  • [7] Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps
    Dilthey, Alexander T.
    Jain, Chirag
    Koren, Sergey
    Phillippy, Adam M.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance
    Ahn, Tae-Hyuk
    Chai, Juanjuan
    Pan, Chongle
    BIOINFORMATICS, 2015, 31 (02) : 170 - 177
  • [9] Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps
    Alexander T. Dilthey
    Chirag Jain
    Sergey Koren
    Adam M. Phillippy
    Nature Communications, 10
  • [10] Essential Gene Identification for a Microarray Data of Yersinia Pestis
    Qian, Lianfen
    Zhang, Wei
    Li, Zhongwei
    2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2014, : 185 - 190