Regularizing Effect in Singular Semilinear Problems

被引:4
|
作者
Carmona, Jose [1 ]
Aparicio, Antonio J. Martinez [1 ]
Martinez-Aparicio, Pedro J. [1 ]
Martinez-Teruel, Miguel [2 ]
机构
[1] Univ Almeria, Dept Matemat, Ctra Sacramento s-n, Almeria 04120, Spain
[2] Univ Granada, Dept Anal Matemat, Avda Fuentenueva s-n, Granada 18071, Granada, Spain
关键词
nonlinear elliptic equations; singular problem; regularizing effect; ELLIPTIC PROBLEMS; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.3846/mma.2023.18616
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze how different relations in the lower order terms lead to the same regularizing effect on singular problems whose model is-triangle u+ g(x, u) = f (x)/u(gamma) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded open set of R-N, gamma > 0, f (x) is a nonnegative function in L-1(Omega) and g(x, s) is a Caratheodory function. In a framework where no H-0(1) (Omega) solution is expected, we prove its existence (regularizing effect) whenever the datum f interacts conveniently either with the boundary of the domain or with the lower order term.
引用
收藏
页码:561 / 580
页数:20
相关论文
共 50 条