On Erdelyi-Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces

被引:1
|
作者
Metwali, Mohamed M. A. [1 ]
Alsallami, Shami A. M. [2 ]
机构
[1] Damanhour Univ, Fac Sci, Dept Math & Comp Sci, Damanhour 22514, Egypt
[2] Umm Al Qura Univ, Coll Appl Sci, Dept Math Sci, Mecca 21955, Saudi Arabia
关键词
measure of noncompactness (MNC); Erdelyi-Kober's (EK) fractional operator; Orlicz spaces; fixed-point theorem (FPT); DIFFERENTIAL-EQUATIONS; EXISTENCE; PRODUCT;
D O I
10.3390/math11183901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide and prove some new fundamental properties of the Erdelyi-Kober (EK) fractional operator, including monotonicity, boundedness, acting, and continuity in both Lebesgue spaces (L-p) and Orlicz spaces (L-phi). We employ these properties with the concept of the measure of noncompactness (MNC) associated with the fixed-point hypothesis (FPT) in solving a quadratic integral equation of fractional order in L-p, p >= 1 and L-phi. Finally, we provide a few examples to support our findings. Our suppositions can be successfully applied to various fractional problems.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Analysis of nonlinear integral equations with Erdelyi-Kober fractional operator
    Wang, JinRong
    Dong, XiWang
    Zhou, Yong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (08) : 3129 - 3139
  • [2] On Erdelyi-Kober fractional Urysohn-Volterra quadratic integral equations
    Darwish, Mohamed Abdalla
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 562 - 569
  • [3] Generalized erdelyi-kober fractional q-integral operator
    Galue, Leda
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2009, 36 (2A): : 21 - 34
  • [4] On the solvability of a class of nonlinear functional integral equations involving Erdelyi-Kober fractional operator
    Pathak, Vijai Kumar
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) : 14340 - 14352
  • [5] NONDECREASING SOLUTIONS OF FRACTIONAL QUADRATIC INTEGRAL EQUATIONS INVOLVING ERDELYI-KOBER SINGULAR KERNELS
    Xin, Jie
    Zhu, Chun
    Wang, Jinrong
    Chen, Fulai
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 44 (01) : 73 - 88
  • [6] On a quadratic integral equation with supremum involving Erdelyi-Kober fractional order
    Darwish, Mohamed Abdalla
    Sadarangani, Kishin
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (5-6) : 566 - 576
  • [7] System of fractional differential equations with Erdelyi-Kober fractional integral conditions
    Thongsalee, Natthaphong
    Laoprasittichok, Sorasak
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. OPEN MATHEMATICS, 2015, 13 : 847 - 859
  • [8] Erdelyi-Kober fractional integral operators on ball Banach function spaces
    Ho, Kwok-Pun
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2021, 145 : 93 - 106
  • [9] Explicit solutions of fractional integral and differential equations involving Erdelyi-Kober operators
    Al-Saqabi, Bader
    Kiryakova, Virginia S.
    [J]. Applied Mathematics and Computation (New York), 1998, 95 (01): : 1 - 13
  • [10] ERDELYI-KOBER FRACTIONAL DIFFUSION
    Pagnini, Gianni
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (01) : 117 - 127