Quasimorphisms on surfaces and continuity in the Hofer norm

被引:0
|
作者
Khanevsky, Michael [1 ]
机构
[1] Technion Israel Inst Technol, Math Dept, IL-32000 Haifa, Israel
关键词
Hamiltonian dynamics; Hofer's metric; quasimorphisms; DIFFEOMORPHISMS;
D O I
10.1142/S1793525323500097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are a number of known constructions of quasimorphisms on Hamiltonian groups. We show that on surfaces many of these quasimorphisms are not compatible with the Hofer norm in a sense they are not continuous and not Lipschitz. The only exception known to the author is the Calabi quasimorphism on a sphere [M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 2003 (2003) 1635-1676] and induced quasimorphisms on genus-zero surfaces (e.g. [P. Biran, M. Entov and L. Polterovich, Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math. 6 (2004) 793-802]).
引用
收藏
页码:719 / 738
页数:20
相关论文
共 50 条
  • [1] FRAGMENTATION NORM AND RELATIVE QUASIMORPHISMS
    Brandenbursky, Michael
    Kedra, Jarek
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4519 - 4531
  • [2] On Continuity of Quasimorphisms for Symplectic Maps
    Entov, Michael
    Polterovich, Leonid
    Py, Pierre
    Khanevsky, Michael
    [J]. PERSPECTIVES IN ANALYSIS, GEOMETRY, AND TOPOLOGY: ON THE OCCASION OF THE 60TH BIRTHDAY OF OLEG VIRO, 2012, 296 : 169 - +
  • [3] The Hofer norm of a contactomorphism
    Shelukhin, Egor
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2017, 15 (04) : 1173 - 1208
  • [4] Submanifolds and the Hofer norm
    Usher, Michael
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (08) : 1571 - 1616
  • [5] Ĝ-invariant quasimorphisms and symplectic geometry of surfaces
    Morimichi Kawasaki
    Mitsuaki Kimura
    [J]. Israel Journal of Mathematics, 2022, 247 : 845 - 871
  • [6] Hamiltonian commutators with large Hofer norm
    Khanevsky, Michael
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (04) : 1175 - 1188
  • [7] Symplectic diffeomorphisms as isometries of Hofer's norm
    Lalonde, F
    Polterovich, L
    [J]. TOPOLOGY, 1997, 36 (03) : 711 - 727
  • [8] Non-degeneracy of the Hofer norm for Poisson structures
    Joksimovic, Dusan
    Marcut, Ioan
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (05) : 1095 - 1100
  • [9] CONTINUITY IN THE ALEXIEWICZ NORM
    Talvila, Erik
    [J]. MATHEMATICA BOHEMICA, 2006, 131 (02): : 189 - 196
  • [10] HOFER'S LENGTH SPECTRUM OF SYMPLECTIC SURFACES
    Khanevsky, Michael
    [J]. JOURNAL OF MODERN DYNAMICS, 2015, 9 : 219 - 235