Fuzzy Spatiotemporal Representation Model for Human Trajectory Classification

被引:2
|
作者
Chen, Lifeng [1 ]
Jin, Canghong [2 ]
Wu, Hao [3 ]
Zhao, Jiafeng [4 ]
Wu, Jianghong [5 ]
机构
[1] Hangzhou City Univ, Informat & Technol Ctr, Supercomp Ctr, 51th Huzhou St, Hangzhou 310015, Zhejiang, Peoples R China
[2] Hangzhou City Univ, Comp Sci, 51th Huzhou St, Hangzhou 310015, Zhejiang, Peoples R China
[3] Macau Univ Sci & Technol, Comp & Informat Syst, Macau, Peoples R China
[4] Zhejiang Univ Technol, Hangzhou, Peoples R China
[5] Zhejiang Key Lab Social Secur Big Data, Hangzhou, Peoples R China
关键词
trajectory encode; behavior representation; trajectory classification; spatiotemporal fuzzification;
D O I
10.18494/SAM4590
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Effective trajectory selection and classification are pivotal in user tracking systems utilizing spatiotemporal data collected from city sensors. However, the inherent limitations in sensor technologies and data collection point distributions often result in low-quality spatiotemporal data. Real-life trajectory classification encounters challenges due to the following: (1) high-order and sparse activity data encompassing both temporal and spatial contexts, and (2) inherent vagueness in the semantics of visited locations, making it difficult to represent behavioral intentions. Traditional statistics-based or trajectory-based feature approaches prove ineffective with non-discriminate features. In response to these challenges, we introduce a novel classification method that integrates fuzzy spatiotemporal features and crowd habit features. This approach involves feature extraction using the Time-Geo Hash (TGH) and User Transit Pattern and Similarity (UTPS) models, followed by the training of a machine learning classification model. On the basis of the performance indicators of classification models, we identify two classification algorithms, incorporate the Bagging algorithm from ensemble learning to enhance the UTPS classification model, and combine the TGH and UTPS models through specified rules. Extensive experiments demonstrate that our proposed model significantly outperforms other classification baselines when applied to a labeled real-life dataset, emphasizing its effectiveness in handling noisy and challenging spatiotemporal data for trajectory classification in user tracking systems.
引用
收藏
页码:4085 / 4104
页数:20
相关论文
共 50 条
  • [1] Exploring the Spatiotemporal Trajectory of the Dynamic Representation of Projectiles
    de Sa Teixeira, Nuno Alexandre
    Oliveira, Armando Monica
    PSICOLOGIA-REFLEXAO E CRITICA, 2013, 26 (04): : 721 - 729
  • [2] A Constructive Fuzzy Representation Model for Heart Data Classification
    Vasilakakis, Michael D.
    Iakovidis, Dimitris K.
    Koulaouzidis, George
    PUBLIC HEALTH AND INFORMATICS, PROCEEDINGS OF MIE 2021, 2021, 281 : 13 - 17
  • [3] HDP-HMM-SCFG: A Novel Model for Trajectory Representation and Classification
    Xu, Weiguang
    Zhang, Yafei
    Lu, Jianjiang
    Wang, Jiabao
    CEIS 2011, 2011, 15
  • [4] TraClets: A trajectory representation and classification library
    Kontopoulos, Ioannis
    Makris, Antonios
    Tserpes, Konstantinos
    SOFTWAREX, 2023, 21
  • [5] A Deep Spatiotemporal Trajectory Representation Learning Framework for Clustering
    Wang, Chao
    Huang, Jiahui
    Wang, Yongheng
    Lin, Zhengxuan
    Jin, Xiongnan
    Jin, Xing
    Weng, Di
    Wu, Yingcai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7687 - 7700
  • [6] Reengineering Fuzzy Spatiotemporal UML Data Model Into Fuzzy Spatiotemporal XML Model
    Chen, Xu
    Yan, Li
    Li, Weijun
    Ma, Zongmin
    IEEE ACCESS, 2017, 5 : 17975 - 17987
  • [7] A Predictive Model for Recognizing Human Behaviour based on Trajectory Representation
    Azorin-Lopez, Jorge
    Saval-Calvo, Marcelo
    Fuster-Guillo, Andres
    Oliver-Albert, Antonio
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1494 - 1501
  • [8] A bipolar knowledge representation model to improve supervised fuzzy classification algorithms
    Villarino, Guillermo
    Gomez, Daniel
    Tinguaro Rodriguez, J.
    Montero, Javier
    SOFT COMPUTING, 2018, 22 (15) : 5121 - 5146
  • [9] A bipolar knowledge representation model to improve supervised fuzzy classification algorithms
    Guillermo Villarino
    Daniel Gómez
    J. Tinguaro Rodríguez
    Javier Montero
    Soft Computing, 2018, 22 : 5121 - 5146
  • [10] Deep Trajectory Classification Model for Congestion Detection in Human Crowds
    Felemban, Emad
    Khan, Sultan Daud
    Naseer, Atif
    Rehman, Faizan Ur
    Basalamah, Saleh
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 705 - 725