Modular forms via invariant theory

被引:1
|
作者
Clery, Fabien [1 ]
van der Geer, Gerard [2 ]
机构
[1] Inst Computat & Expt Res Math, 121 South Main St, Providence, RI 02903 USA
[2] Univ Amsterdam, Korteweg de Vries Inst, Postbus 9424, NL-1090 Amsterdam, Netherlands
关键词
D O I
10.1007/s40993-023-00442-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss two simple but useful observations that allow the construction of modular forms from given ones using invariant theory. The first one deals with elliptic modular forms and their derivatives, and generalizes the Rankin-Cohen bracket, while the second one deals with vector-valued modular forms of genus greater than 1.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Modular forms via invariant theory
    Fabien Cléry
    Gerard van der Geer
    [J]. Research in Number Theory, 2023, 9
  • [2] η-INVARIANT AND MODULAR FORMS
    Han, Fei
    Zhang, Weiping
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (01): : 133 - 142
  • [3] On the normalisation of the modular forms in modular invariant theories of flavour
    Petcov, S. T.
    [J]. PHYSICS LETTERS B, 2024, 850
  • [4] On polynomial invariant rings in modular invariant theory
    Kummini, Manoj
    Mondal, Mandira
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (12)
  • [5] The Picard group of topological modular forms via descent theory
    Mathew, Akhil
    Stojanoska, Vesna
    [J]. GEOMETRY & TOPOLOGY, 2016, 20 (06) : 3133 - 3217
  • [6] Differents in modular invariant theory
    Broer, Abraham
    [J]. TRANSFORMATION GROUPS, 2006, 11 (04) : 551 - 574
  • [7] Differents in modular invariant theory
    Abraham Broer
    [J]. Transformation Groups, 2006, 11 : 551 - 574
  • [8] Hypersurfaces in modular invariant theory
    Broer, Abraham
    [J]. JOURNAL OF ALGEBRA, 2006, 306 (02) : 576 - 590
  • [9] The transfer in modular invariant theory
    Shank, RJ
    Wehlau, DL
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 142 (01) : 63 - 77
  • [10] Quantum Invariant for Torus Link and Modular Forms
    Kazuhiro Hikami
    [J]. Communications in Mathematical Physics, 2004, 246 : 403 - 426