Data-driven imitation learning-based approach for order size determination in supply chains

被引:2
|
作者
Kurian, Dony S. S. [1 ]
Pillai, V. Madhusudanan [1 ]
Gautham, J. [1 ]
Raut, Akash [2 ]
机构
[1] Natl Inst Technol Calicut, Dept Mech Engn, NIT Campus, Calicut 673601, Kerala, India
[2] Natl Inst Technol Calicut, Dept Elect & Elect Engn, NIT Campus, Calicut 673601, Kerala, India
关键词
supply chain; order size determination; machine learning; behavioural experiments; LightGBM; imitation learning; beer game; BEER DISTRIBUTION GAME; INVENTORY MANAGEMENT; DECISION-MAKING; OPTIMIZATION; BEHAVIOR; POLICIES; IMPACT;
D O I
10.1504/EJIE.2023.130601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Past studies have attempted to formulate the order decision-making behaviour of humans for inventory replenishment in dynamic stock management environments. This paper investigates whether a data-driven approach like machine learning can imitate the order size decisions of humans and consequently enhance supply chain performances. Accordingly, this paper proposes a supervised machine learning-based order size determination approach. The proposed approach is initially executed using the order decision data collected from a simulated stock management environment similar to the 'beer game'. Subsequent comparative analysis shows that the proposed approach successfully enhances all supply chain performance measures compared to other well-known ordering methods. Additionally, the proposed approach is validated on a retail case study to investigate its efficacy. This paper thus focuses on extending the past works reported in the literature by modelling human order decision-making as data-driven imitation learning and contributing to machine learning applications for order management. [Submitted: 19 August 2021; Accepted: 16 February 2022]
引用
收藏
页码:379 / 407
页数:30
相关论文
共 50 条
  • [1] Data-driven planning via imitation learning
    Choudhury, Sanjiban
    Bhardwaj, Mohak
    Arora, Sankalp
    Kapoor, Ashish
    Ranade, Gireeja
    Scherer, Sebastian
    Dey, Debadeepta
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (13-14): : 1632 - 1672
  • [2] Machine learning-based data-driven robust optimization approach under uncertainty
    Zhang, Chenhan
    Wang, Zhenlei
    Wang, Xin
    JOURNAL OF PROCESS CONTROL, 2022, 115 : 1 - 11
  • [3] Data-Driven Forecasting of Agitation for Persons with Dementia: A Deep Learning-Based Approach
    HekmatiAthar S.P.
    Goins H.
    Samuel R.
    Byfield G.
    Anwar M.
    SN Computer Science, 2021, 2 (4)
  • [4] A learning-based data-driven forecast approach for predicting future reservoir performance
    Jeong, Hoonyoung
    Sun, Alexander Y.
    Lee, Jonghyun
    Min, Baehyun
    ADVANCES IN WATER RESOURCES, 2018, 118 : 95 - 109
  • [5] Reinforcement learning-based prediction approach for distributed Dynamic Data-Driven Application Systems
    Lin, Szu-Yin
    INFORMATION TECHNOLOGY & MANAGEMENT, 2015, 16 (04): : 313 - 326
  • [6] Reinforcement learning-based prediction approach for distributed Dynamic Data-Driven Application Systems
    Szu-Yin Lin
    Information Technology and Management, 2015, 16 : 313 - 326
  • [7] Data-driven productivity improvement in machinery supply chains
    Lorenz R.
    Netland T.H.
    Roh P.
    Holzwarth V.
    Kunz A.
    Wegener K.
    International Journal of Mechatronics and Manufacturing Systems, 2019, 12 (3-4): : 255 - 271
  • [8] Data-Driven Learning-Based Fault Tolerant Stability Analysis
    Ge Lei
    Chen Shun
    COMPLEXITY, 2020, 2020
  • [9] Approach to data-driven learning
    Markov, Z.
    International Workshop on Fundamentals of Artificial Intelligence Research, 1991,
  • [10] AN APPROACH TO DATA-DRIVEN LEARNING
    MARKOV, Z
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 535 : 127 - 140