Predictors of Metformin Failure: Repurposing Electronic Health Record Data to Identify High-Risk Patients

被引:2
|
作者
Bielinski, Suzette J. [1 ]
Cardozo, Licy L. Yanes [2 ,3 ,4 ,5 ]
Takahashi, Paul Y. [6 ]
Larson, Nicholas B. [7 ]
Castillo, Alexandra [8 ]
Podwika, Alana [9 ]
De Filippis, Eleanna [10 ,11 ]
Hernandez, Valentina [9 ]
Mahajan, Gouri J. [12 ]
Gonzalez, Crystal [9 ]
Shubhangi
Decker, Paul A. [7 ]
Killian, Jill M. [7 ]
Olson, Janet E. [1 ,13 ]
St Sauver, Jennifer L. [1 ,14 ]
Shah, Pankaj [15 ]
Vella, Adrian [15 ]
Ryu, Euijung [16 ]
Liu, Hongfang
Marshall, Gailen D. [3 ]
Cerhan, James R. [1 ]
Singh, Davinder [9 ]
Summers, Richard L. [2 ]
机构
[1] Mayo Clin, Div Epidemiol, Dept Quantitat Hlth Sci, Rochester, MN 55905 USA
[2] Univ Mississippi, Dept Cell & Mol Biol, Med Ctr, Jackson, MS 39216 USA
[3] Univ Mississippi, Dept Med, Med Ctr, Jackson, MS 39216 USA
[4] Univ Mississippi, Mississippi Ctr Excellence Perinatal Res, Med Ctr, Jackson, MS 39216 USA
[5] Univ Mississippi, Womens Hlth Res Ctr, Med Ctr, Jackson, MS 39216 USA
[6] Mayo Clin, Dept Internal Med, Div Community Internal Med, Rochester, MN 55905 USA
[7] Mayo Clin, Dept Quantitat Hlth Sci, Div Clin Trials & Biostat, Rochester, MN 55905 USA
[8] Univ Mississippi, Ctr Informat & Analyt, Med Ctr, Jackson, MS 39216 USA
[9] Mt Pk Hlth Ctr, Phoenix, AZ 85012 USA
[10] Mayo Clin, Dept Artificial Intelligence & Informat, Scottsdale, AZ 85259 USA
[11] Mayo Clin Arizona, Metab Dept Med, 200 First St SW, Scottsdale, AZ 85259 USA
[12] Univ Mississippi, UMMC Biobank, Med Ctr, Sch Med, Jackson, MS 39216 USA
[13] Mayo Clin, Ctr Individualized Med, Rochester, MN 55905 USA
[14] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deliv, Rochester, MN 55905 USA
[15] Mayo Clin, Dept Med, Div Endocrinol Diabet Metab & Nutr, Rochester, MN 55905 USA
[16] Mayo Clin, Dept Quantitat Hlth Sci, Div Computat Biol, Rochester, MN 55905 USA
来源
关键词
diabetes mellitus; hemoglobin A1c; metformin; metformin failure; prediabetes; type; 2; diabetes; DATA RESOURCE PROFILE; GLYCEMIC RESPONSE; TYPE-2; SULFONYLUREAS; MONOTHERAPY; THERAPY;
D O I
10.1210/clinem/dgac759
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context Metformin is the first-line drug for treating diabetes but has a high failure rate. Objective To identify demographic and clinical factors available in the electronic health record (EHR) that predict metformin failure. Methods A cohort of patients with at least 1 abnormal diabetes screening test that initiated metformin was identified at 3 sites (Arizona, Mississippi, and Minnesota). We identified 22 047 metformin initiators (48% female, mean age of 57 +/- 14 years) including 2141 African Americans, 440 Asians, 962 Other/Multiracial, 1539 Hispanics, and 16 764 non-Hispanic White people. We defined metformin failure as either the lack of a target glycated hemoglobin (HbA1c) (<7%) within 18 months of index or the start of dual therapy. We used tree-based extreme gradient boosting (XGBoost) models to assess overall risk prediction performance and relative contribution of individual factors when using EHR data for risk of metformin failure. Results In this large diverse population, we observed a high rate of metformin failure (43%). The XGBoost model that included baseline HbA1c, age, sex, and race/ethnicity corresponded to high discrimination performance (C-index of 0.731; 95% CI 0.722, 0.740) for risk of metformin failure. Baseline HbA1c corresponded to the largest feature performance with higher levels associated with metformin failure. The addition of other clinical factors improved model performance (0.745; 95% CI 0.737, 0.754, P < .0001). Conclusion Baseline HbA1c was the strongest predictor of metformin failure and additional factors substantially improved performance suggesting that routinely available clinical data could be used to identify patients at high risk of metformin failure who might benefit from closer monitoring and earlier treatment intensification.
引用
收藏
页码:1740 / 1746
页数:7
相关论文
共 50 条
  • [1] Identify Cancer Patients at Risk for Heart Failure using Electronic Health Record and Genetic Data
    Yu, Zehao
    Yang, Xi
    Chen, Yiqing
    Fang, Ruogu
    Hogan, William R.
    Gong, Yan
    Wu, Yonghui
    [J]. 2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 138 - 142
  • [2] Machine Learning to Identify Patients at High Risk for Peripheral Arterial Disease From Electronic Health Record Data
    Sonderman, Mark
    Farber-Eger, Eric
    Aday, Aaron W.
    Freiberg, Matthew S.
    Beckman, Joshua A.
    Wells, Quinn
    [J]. CIRCULATION, 2020, 142
  • [3] USING INTEGRATED ELECTRONIC HEALTH RECORD DATA TO IDENTIFY PATIENTS WITH ADVANCED HEART FAILURE PROFILES
    Martyn, Trejeeve
    Saef, Joshua
    West, Lucianne
    Block-Beach, Hunter
    Brophy, Todd
    Hohman, Jessica
    Starling, Randall C.
    Tang, Wai Hong Wilson
    Khot, Umesh
    Estep, Jerry D.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 455 - 455
  • [4] Using Electronic Health Records and Claims Data to Identify High-risk Patients Likely to Benefit From Palliative Care
    Guo, Aixia
    Foraker, Randi
    White, Patrick
    Chivers, Corey
    Courtright, Katherine
    Moore, Nathan
    [J]. AMERICAN JOURNAL OF MANAGED CARE, 2021, 27 (01): : E7 - +
  • [5] Predictors of hospitalisation in patients with heart failure: a retrospective analysis in the Optum electronic health record data source
    Studer, R.
    Pollard, C.
    Lynch, B.
    Saha, S.
    Houchen, E.
    Proudfoot, C.
    Corda, S.
    Mather, P. J.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2021, 23 : 68 - 68
  • [6] Development and validation of a risk scoring system to identify patients with lupus nephritis in electronic health record data
    Izadi, Zara
    Gianfrancesco, Milena
    Anastasiou, Christine
    Schmajuk, Gabriela
    Yazdany, Jinoos
    [J]. LUPUS SCIENCE & MEDICINE, 2024, 11 (01):
  • [7] Find MODY: Electronic Health Record Technology to Identify Patients at High Risk of Having Monogenic Diabetes
    Naik, Amol
    Cheng, Yu-Chien
    Yoo, Janet
    Beig, Mohammad Imran
    Carmody, David
    Naylor, Rochelle
    Billings, Liana K.
    [J]. DIABETES, 2016, 65 : A380 - A380
  • [8] REDUCING HIGH-RISK GERIATRIC POLYPHARMACY VIA ELECTRONIC HEALTH RECORD NUDGES
    Brown, Tiffany
    Persell, Stephen
    Lee, Ji Young
    Linder, Jeffrey A.
    Friedberg, Mark W.
    [J]. JOURNAL OF GENERAL INTERNAL MEDICINE, 2020, 35 (SUPPL 1) : S253 - S253
  • [9] At risk in the emergency department: can the electronic health record identify patients with indications for PrEP?
    Walter, L.
    Carlisle, N.
    Rodgers, J.
    Booth, J.
    Heath, S.
    [J]. JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2022, 25 : 99 - 100
  • [10] Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study
    Corey, Kristin M.
    Kashyap, Sehj
    Lorenzi, Elizabeth
    Lagoo-Deenadayalan, Sandhya A.
    Heller, Katherine
    Whalen, Krista
    Balu, Suresh
    Heflin, Mitchell T.
    McDonald, Shelley R.
    Swaminathan, Madhav
    Sendak, Mark
    [J]. PLOS MEDICINE, 2018, 15 (11)