A rational design of titanium-based heterostructures as electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries

被引:12
|
作者
Zhang, Han [1 ]
Zhang, Yiwen [1 ]
Li, Ling [1 ]
Zhou, Hongxu [1 ]
Wang, Mingchi [1 ]
Li, Lixiang [1 ]
Geng, Xin [1 ]
An, Baigang [1 ]
Sun, Chengguo [1 ,2 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Chem Engn, Anshan 114051, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Heterostructures; Polysulfide chemisorption; Catalytic effect; LITHIUM-SULFUR BATTERIES; PERFORMANCE; MXENE; NANOCRYSTALS; CATHODE; REDOX; HOST;
D O I
10.1016/j.jcis.2022.11.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur batteries have great potential for next-generation electrochemical storage systems owing to their high theoretical specific energy and cost-effectiveness. However, the shuttle effect of soluble polysulfides and sluggishmulti-electron sulfur redox reactions has severely impeded the implementation of lithium-sulfur batteries. Herein, we prepared a new type of Ti3C2-TiO2 heterostructure sandwich nanosheet confined within polydopamine derived N-doped porous carbon. The highly polar heterostructures sandwich nanosheet with a high specific surface area can strongly absorb polysulfides, restraining their outward diffusion into the electrolyte. Abundant boundary defects constructed by new types of heterostructures reduce the overpotential of nucleation and improve the nucleation/conversion redox kinetics of Li2S. The Ti3C2-TiO2@NC/S cathode exhibited discharge capacities of 1363, and 801 mAh g(-1) at the first and 100th cycles at 0.5C, respectively, and retained an ultralow capacity fade rate of 0.076% per cycle over 500cycles at 1.0C. This study provides a potential avenue for constructing heterostructurematerials for electrochemical energy storage and catalysis. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:432 / 440
页数:9
相关论文
共 50 条
  • [1] A topochemically constructed flexible heterogeneous vanadium-based electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries
    Yang, Yadong
    Li, Xingxing
    Luo, Rongjie
    Zhang, Xuming
    Fu, Jijiang
    Zheng, Yang
    Huo, Kaifu
    Zhou, Tengfei
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (10) : 3830 - 3840
  • [2] Dual electrocatalytic heterostructures for efficient immobilization and conversion of polysulfides in Li-S batteries
    Yang, Menghua
    Wang, Xuewei
    Wu, Jinfeng
    Tian, Yue
    Huang, Xingyu
    Liu, Ping
    Li, Xianyang
    Li, Xinru
    Liu, Xiaoyan
    Li, Hexing
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (34) : 18477 - 18487
  • [3] Rational design of dual catalysts towards efficient polysulfides conversion for high performance Li-S batteries
    Gu, Shaonan
    Liu, Bingjie
    Jiang, Yue
    Li, Hongda
    Wang, Yinan
    Gao, Yinglu
    Ren, Yongqiang
    Zhou, Guowei
    JOURNAL OF POWER SOURCES, 2022, 545
  • [4] Rational design of a mesoporous silica-based cathode for efficient trapping of polysulfides in Li-S batteries
    Chen, Chao
    Xu, Huifang
    Zhang, Bingkai
    Jiang, Qingbin
    Zhang, Yaping
    Li, Lei
    Lin, Zhan
    CHEMICAL COMMUNICATIONS, 2020, 56 (05) : 786 - 789
  • [5] Efficient regulation of polysulfides by CoP/C microspheres for enhancing conversion kinetics in Li-S batteries
    Li, Zheng
    Ma, Yujie
    Liu, Qingli
    Ye, Jiajia
    Wang, Zifan
    Xia, Guang
    MATERIALS LETTERS, 2025, 386
  • [6] A High-Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li-S Batteries
    Ye, Zhengqing
    Jiang, Ying
    Li, Li
    Wu, Feng
    Chen, Renjie
    ADVANCED MATERIALS, 2020, 32 (32)
  • [7] Long-life Li-S batteries based on enabling the immobilization and catalytic conversion of polysulfides
    Zhang, Yupeng
    Gu, Rong
    Zheng, Shuai
    Liao, KeXuan
    Shi, Penghui
    Fan, Jinchen
    Xu, QunJie
    Min, YuLin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (38) : 21747 - 21758
  • [8] Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion
    Zhang, Teng
    Zhang, Long
    Zhao, Lina
    Huang, Xiaoxiao
    Hou, Yanglong
    ENERGYCHEM, 2020, 2 (04)
  • [9] Manipulating the Conversion Kinetics of Polysulfides by Engineering Oxygen p-Band of Halloysite for Improved Li-S Batteries
    Zhang, Qiang
    Gao, Ruijie
    Li, Zixiong
    Zhou, Binghui
    Tang, Aidong
    Wang, Jian
    Zou, Ji-Jun
    Yang, Huaming
    SMALL, 2022, 18 (06)
  • [10] Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries
    He, Jiarui
    Hartmann, Gregory
    Lee, Myungsuk
    Hwang, Gyeong S.
    Chen, Yuanfu
    Manthiram, Arumugam
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) : 344 - 350