VOLUME GROWTH OF 3-MANIFOLDS WITH SCALAR CURVATURE LOWER BOUNDS

被引:1
|
作者
Chodosh, Otis [1 ]
Li, Chao [2 ]
Stryker, Douglas [3 ]
机构
[1] Stanford Univ, Dept Math, Bldg 380, Stanford, CA 94305 USA
[2] NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USA
[3] Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
RICCI CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.1090/proc/16521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new proof of a recent result of Munteanu-Wang relating scalar curvature to volume growth on a 3-manifold with non-negative Ricci curvature. Our proof relies on the theory of & mu;-bubbles introduced by Gromov [Geom. Funct. Anal. 28 specialIntscript pp. 645-726] as well as the almost splitting theorem due to Cheeger-Colding [Ann. of Math. specialIntscript 144 specialIntscript pp. 189-237].
引用
收藏
页码:4501 / 4511
页数:11
相关论文
共 50 条