Besov regularity theory for stationary electrorheological fluids

被引:1
|
作者
Ma, Lingwei [1 ]
Zhang, Zhenqiu [2 ,3 ]
Xiong, Qi [2 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Higher order fractional differentiability; Electro-rheological fluids; Variable exponents; Besov spaces; HIGHER DIFFERENTIABILITY; VARIATIONAL INTEGRALS; OBSTACLE PROBLEMS; MINIMIZERS; OPERATOR;
D O I
10.1016/j.jde.2022.10.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to obtain the higher order fractional differentiability of weak solution pairs for the following system modeling the stationary motion of electro-rheological fluids {-div ((1 + vertical bar Du vertical bar(2)) (p(x)-2/2) Du) + [del u]u + del pi = -div F in Omega div u = 0 in Omega in Besov space, where F is Besov regular and the non-standard growth exponent p(x) is Besov-Orlicz regular. The main approach to prove this result is to establish a Besov regular priori estimate of weak solution pairs for its Stokes setting without convective term [del u]u, and then treat the convective term as a part of nonhomogeneous term in the general systems. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:790 / 815
页数:26
相关论文
共 50 条
  • [1] Regularity results for electrorheological fluids: the stationary case
    Acerbi, E
    Mingione, G
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) : 817 - 822
  • [2] A regularity result for stationary electrorheological fluids in two dimensions
    Bildhauer, M
    Fuchs, M
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (13) : 1607 - 1617
  • [3] The application of the nonsmooth critical point theory to the stationary electrorheological fluids
    Chenyin Qian
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [4] The application of the nonsmooth critical point theory to the stationary electrorheological fluids
    Qian, Chenyin
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [5] Theory and experiments on electrorheological fluids
    Sheng, P
    Tam, WY
    Wen, W
    Ma, H
    Yi, GH
    Loy, MMT
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (14-16): : 1750 - 1757
  • [6] THEORY OF DILUTE ELECTRORHEOLOGICAL FLUIDS
    HEMP, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1891): : 297 - 315
  • [7] Regularity of Stationary Weak Solutions in the Theory of Generalized Newtonian Fluids with Energy Transfer
    L. Consiglieri
    T. Shilkin
    [J]. Journal of Mathematical Sciences, 2003, 115 (6) : 2771 - 2788
  • [8] Dielectric electrorheological fluids: theory and experiment
    Ma, HR
    Wen, WJ
    Tam, WY
    Sheng, P
    [J]. ADVANCES IN PHYSICS, 2003, 52 (04) : 343 - 383
  • [9] Electrorheological fluids: Modeling and mathematical theory
    Ruzicka, M
    [J]. ELECTRORHEOLOGICAL FLUIDS: MODELING AND MATHEMATICAL THEORY, 2000, 1748 : 1 - +
  • [10] C1,α-regularity for electrorheological fluids in two dimensions
    L. Diening
    F. Ettwein
    M. Růžička
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 207 - 217