YOLOX-based Framework for Nuclei Detection on Whole-Slide Histopathological RGB and Hyperspectral Images

被引:0
|
作者
Vega, Carlos [1 ]
Quintana, Laura [1 ]
Ortega, Samuel [1 ,2 ]
Fabelo, Himar [1 ,3 ]
Sauras, Esther [4 ,5 ]
Gallardo, Noelia [4 ]
Mata, Daniel [4 ]
Lejeune, Marylene [4 ,5 ]
Lopez, Carlos [4 ,5 ]
Callico, Gustavo M. [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Inst Appl Microelect, Las Palmas Gran Canaria, Spain
[2] Norwegian Inst Food Fisheries & Aquaculture Res, Nofima, Tromso, Norway
[3] FIISC, Las Palmas Gran Canaria, Spain
[4] Hosp Tortosa Verge de la Cinta, ICS, IISPV, Dept Pathol, Tortosa, Spain
[5] Univ Rovira & Virgili, Tortosa, Spain
来源
MEDICAL IMAGING 2023 | 2023年 / 12471卷
关键词
Breast tumor; Hyperspectral Imaging; Deep Learning; Convolutional Neural Network;
D O I
10.1117/12.2654036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The current advances in Whole-Slide Imaging (WSI) scanners allow for more and better visualization of histological slides. However, the analysis of histological samples by visual inspection is subjective and could be challenging. State-of-the-art object detection algorithms can be trained for cell spotting in a WSI. In this work, a new framework for the detection of tumor cells in high-resolution and high-detail using both RGB and Hyperspectral (HS) imaging is proposed. The framework introduces techniques to be trained on partially labeled data, since labeling at the cellular level is a time and energy-consuming task. Furthermore, the framework has been developed for working with RGB and HS information reduced to 3 bands. Current results are promising, showcasing in RGB similar performance as reference works (F1-score = 66.2%) and high possibilities for the integration of reduced HS information into current state-of-art deep learning models, with current results improving the mean precision a 6.3% from synthetic RGB images.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Detection of Blur Artifacts in Histopathological Whole-Slide Images of Endomyocardial Biopsies
    Wu, Hang
    Phan, John H.
    Bhatia, Ajay K.
    Cundiff, Caitlin A.
    Shehata, Bahig M.
    Wang, May D.
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 727 - 730
  • [2] Stain Specific Standardization of Whole-Slide Histopathological Images
    Bejnordi, Babak Ehteshami
    Litjens, Geert
    Timofeeva, Nadya
    Otte-Holler, Irene
    Homeyer, Andre
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) : 404 - 415
  • [3] Staining condition visualization in digital histopathological whole-slide images
    Jiao, Yiping
    Li, Junhong
    Fei, Shumin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (13) : 17831 - 17847
  • [4] Staining condition visualization in digital histopathological whole-slide images
    Yiping Jiao
    Junhong Li
    Shumin Fei
    [J]. Multimedia Tools and Applications, 2022, 81 : 17831 - 17847
  • [5] COMPARISON OF DIFFERENT METHODS FOR TISSUE SEGMENTATION IN HISTOPATHOLOGICAL WHOLE-SLIDE IMAGES
    Bandi, Peter
    van de Loo, Rob
    Intezar, Milad
    Geijs, Daan
    Ciompi, Francesco
    van Ginneken, Bram
    van der Laak, Jeroen
    Litjens, Geert
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 591 - 595
  • [6] CrossLinkNet: An Explainable and Trustworthy AI Framework for Whole-Slide Images Segmentation
    Xiao, Peng
    Zhong, Qi
    Chen, Jingxue
    Wu, Dongyuan
    Qin, Zhen
    Zhou, Erqiang
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4703 - 4724
  • [7] A Feature Learning Framework for Reproducible Invasive Tumor Detection of Breast Cancer in Whole-Slide Images
    Cruz-Roa, Angel
    Basavanhally, Ajay
    Gonzalez, Fabio
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Gilmore, Hannah
    Madabhushi, Anant
    [J]. MODERN PATHOLOGY, 2015, 28 : 40A - 40A
  • [8] A Feature Learning Framework for Reproducible Invasive Tumor Detection of Breast Cancer in Whole-Slide Images
    Cruz-Roa, Angel
    Basavanhally, Ajay
    Gonzalez, Fabio
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Gilmore, Hannah
    Madabhushi, Anant
    [J]. LABORATORY INVESTIGATION, 2015, 95 : 40A - 40A
  • [9] Evaluating Cell Nuclei Segmentation for Use on Whole-Slide Images in Lung Cytology
    Forsberg, Daniel
    Monsef, Nastaran
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3380 - 3385
  • [10] Deep learning-based tumor microenvironment analysis in colon adenocarcinoma histopathological whole-slide images
    Jiao, Yiping
    Li, Junhong
    Qian, Chenqi
    Fei, Shumin
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 204