Resurgence and Partial Theta Series

被引:0
|
作者
Han, Li [1 ,2 ]
Li, Yong [3 ,4 ]
Sauzin, David [1 ,5 ]
Sun, Shanzhong [1 ,6 ]
机构
[1] Capital Normal Univ, Dept Math, Beijing, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin, Peoples R China
[4] Nankai Univ, Lab Pure Math & Combinator, Tianjin, Peoples R China
[5] Paris Sci & Lettres Univ, Ctr Natl Rech Sci, Observ Paris, Paris, France
[6] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing, Peoples R China
基金
国家重点研发计划; 欧洲研究理事会;
关键词
resurgence; modularity; partial theta series; topological quantum field theory;
D O I
10.1134/S001626632303005X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider partial theta series associated with periodic sequences of coefficients, of the form Theta(tau):=& sum;(n>0)n(nu)f(n)e(i pi n2 tau/M), with nu non-negative integer and an M-periodic function f : Z -> C. Such a function is analytic in the half-plane {Im(tau)>0} and as tau tends non-tangentially to any alpha is an element of Q, a formal power series appears in the asymptotic behaviour of Theta(tau), depending on the parity of nu and f. We discuss the summability and resurgence properties of these series by means of explicit formulas for their formal Borel transforms, and the consequences for the modularity properties of Theta, or its ``quantum modularity'' properties in the sense of Zagier's recent theory. The Discrete Fourier Transform of f plays an unexpected role and leads to a number-theoretic analogue of & Eacute;calle's ``Bridge Equations''. The motto is: (quantum) modularity = Stokes phenomenon + Discrete Fourier Transform.
引用
收藏
页码:248 / 265
页数:18
相关论文
共 50 条
  • [1] Resurgence and Partial Theta Series
    Li Han
    Yong Li
    David Sauzin
    Shanzhong Sun
    [J]. Functional Analysis and Its Applications, 2023, 57 : 248 - 265
  • [2] Radial limits of partial theta and similar series
    Kursungoz, Kagan
    [J]. RAMANUJAN JOURNAL, 2017, 43 (01): : 95 - 112
  • [3] Radial limits of partial theta and similar series
    Kağan Kurşungöz
    [J]. The Ramanujan Journal, 2017, 43 : 95 - 112
  • [4] Quantum modularity of partial theta series with periodic coefficients
    Goswami, Ankush
    Osburn, Robert
    [J]. FORUM MATHEMATICUM, 2021, 33 (02) : 451 - 463
  • [5] Ramanujan’s partial theta series and parity in partitions
    Ae Ja Yee
    [J]. The Ramanujan Journal, 2010, 23 : 215 - 225
  • [6] Ramanujan's partial theta series and parity in partitions
    Yee, Ae Ja
    [J]. RAMANUJAN JOURNAL, 2010, 23 (1-3): : 215 - 225
  • [7] THETA SERIES ON THE THETA GROUP
    KOHLER, G
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1988, 58 : 15 - 45
  • [8] Partial theta functions and mock modular forms as q-hypergeometric series
    Bringmann, Kathrin
    Folsom, Amanda
    Rhoades, Robert C.
    [J]. RAMANUJAN JOURNAL, 2012, 29 (1-3): : 295 - 310
  • [9] ON ASYMPTOTIC FORMULAS FOR CERTAIN q-SERIES INVOLVING PARTIAL THETA FUNCTIONS
    Jo, Sihun
    Kim, Byungchan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) : 3253 - 3263
  • [10] Partial theta functions and mock modular forms as q-hypergeometric series
    Kathrin Bringmann
    Amanda Folsom
    Robert C. Rhoades
    [J]. The Ramanujan Journal, 2012, 29 : 295 - 310