Nodal solutions to (p, q)-Laplacian equations with critical growth

被引:0
|
作者
Pu, Hongling [1 ,2 ]
Liang, Sihua [3 ]
Ji, Shuguan [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
[3] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
关键词
(p; q)-Laplacian operator; Poisson equation; Critical growth; Variational methods; Nodal solutions; SCHRODINGER-POISSON SYSTEM; SIGN-CHANGING SOLUTIONS; KIRCHHOFF-TYPE PROBLEM; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.3233/ASY-231871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of (p, q)-Laplacian equations with critical growth is taken into consideration: { -Delta(p)u - Delta(q)u + (vertical bar u vertical bar(p-2) + vertical bar u vertical bar(q-2))u + lambda phi vertical bar u vertical bar(q-2)u = mu g(u) + vertical bar u vertical bar(q*-2)u, x is an element of R-3, -Delta phi = vertical bar u vertical bar(q), x is an element of R-3, where Delta(xi)u = div(vertical bar del u vertical bar(xi-2) del u) is the xi-Laplacian operator (xi = p, q), 3/2 < p < q < 3, lambda and mu are positive parameters, q* = 3q/(3 - q) is the Sobolev critical exponent. We use a primary technique of constrained minimization to determine the existence, energy estimate and convergence property of nodal (that is, sign-changing) solutions under appropriate conditions on g, and thus generalize the existing results.
引用
收藏
页码:133 / 156
页数:24
相关论文
共 50 条