共 50 条
Nodal solutions to (p, q)-Laplacian equations with critical growth
被引:0
|作者:
Pu, Hongling
[1
,2
]
Liang, Sihua
[3
]
Ji, Shuguan
[1
,2
]
机构:
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
[3] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
关键词:
(p;
q)-Laplacian operator;
Poisson equation;
Critical growth;
Variational methods;
Nodal solutions;
SCHRODINGER-POISSON SYSTEM;
SIGN-CHANGING SOLUTIONS;
KIRCHHOFF-TYPE PROBLEM;
POSITIVE SOLUTIONS;
ELLIPTIC-EQUATIONS;
EXISTENCE;
D O I:
10.3233/ASY-231871
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, a class of (p, q)-Laplacian equations with critical growth is taken into consideration: { -Delta(p)u - Delta(q)u + (vertical bar u vertical bar(p-2) + vertical bar u vertical bar(q-2))u + lambda phi vertical bar u vertical bar(q-2)u = mu g(u) + vertical bar u vertical bar(q*-2)u, x is an element of R-3, -Delta phi = vertical bar u vertical bar(q), x is an element of R-3, where Delta(xi)u = div(vertical bar del u vertical bar(xi-2) del u) is the xi-Laplacian operator (xi = p, q), 3/2 < p < q < 3, lambda and mu are positive parameters, q* = 3q/(3 - q) is the Sobolev critical exponent. We use a primary technique of constrained minimization to determine the existence, energy estimate and convergence property of nodal (that is, sign-changing) solutions under appropriate conditions on g, and thus generalize the existing results.
引用
收藏
页码:133 / 156
页数:24
相关论文