Arbitrage-Free Implied Volatility Surface Generation with Variational Autoencoders

被引:0
|
作者
Ning, Brian [1 ]
Jaimungal, Sebastian [1 ]
Zhang, Xiaorong [1 ]
Bergeron, Maxime [2 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON M5G 1Z5, Canada
[2] Riskfuel Analyt, Toronto, ON M5C 1X6, Canada
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2023年 / 14卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
machine learning; computational finance; implied volatility; variational autoencoder; Levy processes;
D O I
10.1137/21M1443546
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free variational autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and Le'\vy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces. We further refine the VAE model by including conditional features and demonstrate its superior generative out-of-sample performance. Finally, we showcase how our method can be used as a data augmentation tool to help practitioners manage the tail risk of option portfolios.
引用
收藏
页码:1004 / 1027
页数:24
相关论文
共 50 条
  • [1] Arbitrage-free smoothing of the implied volatility surface
    Fengler, Matthias R.
    [J]. QUANTITATIVE FINANCE, 2009, 9 (04) : 417 - 428
  • [2] Arbitrage-free conditions for implied volatility surface by Delta
    Wang, Ximei
    Zhao, Yanlong
    Bao, Ying
    [J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2019, 48 : 819 - 834
  • [3] A two-step framework for arbitrage-free prediction of the implied volatility surface
    Zhang, Wenyong
    Li, Lingfei
    Zhang, Gongqiu
    [J]. QUANTITATIVE FINANCE, 2023, 23 (01) : 21 - 34
  • [4] IMPLIED VOLATILITY FUNCTIONS IN ARBITRAGE-FREE TERM STRUCTURE MODELS
    AMIN, KI
    MORTON, AJ
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 1994, 35 (02) : 141 - 180
  • [5] Arbitrage-free implied volatility surfaces for options on single stock futures
    Kotze, Antonie
    Labuschagne, Coenraad C. A.
    Nair, Merell L.
    Padayachi, Nadine
    [J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2013, 26 : 380 - 399
  • [6] From arbitrage to arbitrage-free implied volatilities
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (03) : 31 - 49
  • [7] Model-free stochastic collocation for an arbitrage-free implied volatility: Part I
    Fabien Le Floc’h
    Cornelis W. Oosterlee
    [J]. Decisions in Economics and Finance, 2019, 42 : 679 - 714
  • [8] Model-Free Stochastic Collocation for an Arbitrage-Free Implied Volatility, Part II
    Le Floc'h, Fabien
    Oosterlee, Cornelis W.
    [J]. RISKS, 2019, 7 (01):
  • [9] Model-free stochastic collocation for an arbitrage-free implied volatility: Part I
    Le Floc'h, Fabien
    Oosterlee, Cornelis W.
    [J]. DECISIONS IN ECONOMICS AND FINANCE, 2019, 42 (02) : 679 - 714
  • [10] ON VOLATILITY OF PRICES IN ARBITRAGE-FREE MARKETS
    HINDY, A
    [J]. ECONOMIC THEORY, 1995, 6 (03) : 421 - 438