Flexible Nonlinear Error Correction Method Based on Support Vector Regression in Fringe Projection Profilometry

被引:2
|
作者
Cai, Siao [1 ]
Cui, Ji [1 ]
Li, Wei [1 ]
Feng, Guoying [1 ]
机构
[1] Sichuan Univ, Inst Laser & Micro Nano Engn, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Calibration; Probability density function; Cameras; Support vector machines; Harmonic analysis; Error correction; Phase measurement; Flexible nonlinear error correction; fringe projection profilometry (FPP); support vector regression (SVR); 3-DIMENSIONAL SHAPE MEASUREMENT; HIGH-SPEED; PHASE; COMPENSATION;
D O I
10.1109/TIM.2022.3223065
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The gamma effect of a projector is the most critical factor affecting 3-D shape measurements. A flexible and efficient error correction algorithm based on machine learning is proposed that facilitates correcting the system nonlinear error without any system nonlinear parameter calibration or knowledge of prior system information. The proposed method is a two-stage framework. The first stage is the projector gamma estimation module. First, the probability density function (PDF) of the wrapped phase with different gamma values is generated by simulation. The corresponding PDF sequence and gamma values are combined into a dataset to train a support vector regression (SVR) model. The trained SVR model can estimate the system gamma value according to the PDF sequence of the actual measured wrapped phases. The second stage is the phase error compensation module. In this stage, we establish the objective function according to the mathematical model and the gamma value estimated in the first part, and then use an iterative algorithm to solve the precise phase. The experimental and simulation results confirm the effectiveness of this method in directly identifying the system gamma value from the wrapped phase without complicated system calibration or any prior system information. The proposed algorithm is suitable for time-varying nonlinear systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Active projection nonlinear ? correction method for fringe projection profilometry
    Wang, L. I. N.
    Zhang, Y. U. E. T. O. N. G.
    Yi, L. I. N. A.
    Hao, X. I. N.
    Wang, M. E. I. Y. I.
    Wang, X. I. A. N. G. J. U. N.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (11) : 1983 - 1991
  • [2] A New Method for Fringe Order Error Correction in Fringe Projection Profilometry
    Zhang, Yiwei
    Duan, Chengpu
    Xi, Jiangtao
    Tong, Jun
    Yu, Yanguang
    Guo, Qinghua
    [J]. OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS VI, 2019, 11189
  • [3] Phase error correction for digital fringe projection profilometry
    Ma, Suodong
    Quan, Chenggen
    Tay, Cho Jui
    Zhu, Rihong
    Li, Bo
    [J]. INTERNATIONAL CONFERENCE ON OPTICS IN PRECISION ENGINEERING AND NANOTECHNOLOGY (ICOPEN 2011), 2011, 19
  • [4] Local blur analysis and phase error correction method for fringe projection profilometry systems
    Rao, Li
    Da, Feipeng
    [J]. APPLIED OPTICS, 2018, 57 (15) : 4267 - 4276
  • [5] Nonlinear error self-correction for fringe projection profilometry with minimum phase probability variance
    Zheng, Yabing
    Duan, Minghui
    Zhang, Ruihu
    Fan, Xin
    Jin, Yi
    Zheng, Jinjin
    [J]. OPTICS AND LASER TECHNOLOGY, 2024, 174
  • [6] Adaptive depth measurement based on adversarial relevance vector regression for fringe projection profilometry
    Qiu, Kepeng
    Tian, Luo
    Wang, Peng
    [J]. MEASUREMENT, 2024, 227
  • [7] Flexible Error Diffusion Algorithm for Binary Defocusing Fringe Projection Profilometry
    Xu, Chunmei
    Duan, Minghui
    Sun, Zheng
    Zheng, Yabing
    Kan, Yan
    Jin, Yi
    Zhu, Changan
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [8] Flexible calibration method for telecentric fringe projection profilometry systems
    Rao, Li
    Da, Feipeng
    Kong, Weiqi
    Huang, Heming
    [J]. OPTICS EXPRESS, 2016, 24 (02): : 1222 - 1237
  • [9] Probability-distribution-based Gamma correction method in fringe projection profilometry
    Ma, Long
    Tang, Lingxuan
    Pei, Xin
    Sun, Benyuan
    Qian, Ruijie
    Zhao, Yuan
    [J]. OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS IX, 2022, 12319
  • [10] Invalid point removal method based on error energy function in fringe projection profilometry
    Zhu, Kaifeng
    He, Xin
    Gao, Yi
    Hao, Ruidong
    Wei, Zhonghui
    Long, Bing
    Mu, Zhiya
    Wang, Jun
    [J]. RESULTS IN PHYSICS, 2022, 41