Adversarial Anomaly Detection using Gaussian Priors and Nonlinear Anomaly Scores

被引:0
|
作者
Lueer, Fiete [1 ]
Weber, Tobias [2 ]
Dolgich, Maxim [1 ]
Boehm, Christian [3 ]
机构
[1] eMundo Gmbh, Gofore Oyj, Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Stat, Munich, Germany
[3] Univ Vienna, Fac Comp Sci, Vienna, Austria
关键词
adversarial autoencoder; generative adversarial networks; variational autoencoder; anomaly detection; time series;
D O I
10.1109/ICDMW60847.2023.00078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in imbalanced datasets is a frequent and crucial problem, especially in the medical domain where retrieving and labeling irregularities is often expensive. By combining the generative stability of a beta-variational autoencoder (VAE) with the discriminative strengths of generative adversarial networks (GANs), we propose a novel model, beta-VAEGAN. We investigate methods for composing anomaly scores based on the discriminative and reconstructive capabilities of our model. Existing work focuses on linear combinations of these components to determine if data is anomalous. We advance existing work by training a kernelized support vector machine (SVM) on the respective error components to also consider nonlinear relationships. This improves anomaly detection performance, while allowing faster optimization. Lastly, we use the deviations from the Gaussian prior of beta-VAEGAN to form a novel anomaly score component. In comparison to state-of-the-art work, we improve the F-1 score during anomaly detection from 0.85 to 0.92 on the widely used MITBIH Arrhythmia Database.(1)
引用
收藏
页码:550 / 559
页数:10
相关论文
共 50 条
  • [1] Counterfeit Anomaly Using Generative Adversarial Network for Anomaly Detection
    Shen, Haocheng
    Chen, Jingkun
    Wang, Ruixuan
    Zhang, Jianguo
    IEEE ACCESS, 2020, 8 (08): : 133051 - 133062
  • [2] adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection
    Wang, Xuhong
    Du, Ying
    Lin, Shijie
    Cui, Ping
    Shen, Yuntian
    Yang, Yupu
    KNOWLEDGE-BASED SYSTEMS, 2020, 190
  • [3] Heartbeat Anomaly Detection using Adversarial Oversampling
    Lima, Jefferson L. P.
    Manedo, David
    Zanchettin, Cleber
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [4] Double-Adversarial Activation Anomaly Detection: Adversarial Autoencoders are Anomaly Generators
    Schulze, Jan-Philipp
    Sperl, Philip
    Boettinger, Konstantin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] Robust Anomaly Detection in Images Using Adversarial Autoencoders
    Beggel, Laura
    Pfeiffer, Michael
    Bischl, Bernd
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 206 - 222
  • [6] Robust Anomaly Detection Using Reconstructive Adversarial Network
    Nie, Lihai
    Zhao, Laiping
    Li, Keqiu
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 1899 - 1912
  • [7] Adversarial autoencoder for hyperspectral anomaly detection
    Du Q.
    Xie W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1105 - 1114
  • [8] Hierarchical Anomaly Detection Using a Multioutput Gaussian Process
    Cho, Woojin
    Kim, Youngrae
    Park, Jinkyoo
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (01) : 261 - 272
  • [9] An Encoding Adversarial Network for Anomaly Detection
    Gherbi, Elies
    Hanczar, Blaise
    Janodet, Jean-Christophe
    Klaudel, Witold
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 188 - 203
  • [10] Anomaly Detection with Dual Adversarial Training
    Liu, Shuo
    Xu, Liwen
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 466 - 473