Silicone Alleviates Palladium Toxicity by Modifying Palladium Uptake, Ascorbate-Glutathione Cycle, and Glyoxalase System in Maize Seedlings

被引:2
|
作者
Aksakal, Ozkan [1 ]
机构
[1] Ataturk Univ, Sci Fac, Dept Biol, TR-25240 Erzurum, Turkey
关键词
Ascorbate; Gene expression; Glutathione; Methylglyoxal; Palladium; Silicon; ZEA-MAYS L; HYDROGEN-PEROXIDE; PLATINUM-GROUP; STRESS; PLANTS; TOLERANCE; GROWTH; METHYLGLYOXAL; NANOPARTICLES; CHLOROPLASTS;
D O I
10.1007/s00344-022-10828-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Palladium (Pd) is a trace metal used in automotive catalytic converters, which has adverse effects on living organisms when migrating into the environment. Silicon (Si) is an element that ameliorates the toxicity of metals and is abundant in the earth's crust. In the present study the effect of Si and Pd on plant growth, ascorbate-glutathione cycle (ASA-GSH), and glyoxalase system in maize were investigated. Pd stress decreased growth, chlorophyll content, and leaf relative water content, increased Pd concentration in maize seedlings. Si treatment alleviated Pd toxicity by improving growth and chlorophyll content, decreasing Pd content in roots and leaves. Besides, Si also induced the accumulation of soluble sugars, soluble proteins, and proline. Pd stress enhanced reactive oxygen species (ROS), malondialdehyde (MDA), and methylglyoxal (MG) levels. Si application modulated ascorbate and glutathione levels, ASA-GSH cycle enzyme activities, glyoxalase I and glyoxalase II activities, superoxide dismutase, and catalase activities, and resulted in a considerable reduction in ROS, MDA, and MG levels during Pd stress. Moreover, the expression of ascorbate peroxidase, catalase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase genes was induced in the presence of Si to alleviate Pd stress. The results indicated that Si treatment improved tolerance to Pd in maize by regulating growth, Pd uptake, ASA-GSH cycle, and glyoxalase system.
引用
收藏
页码:3662 / 3676
页数:15
相关论文
共 49 条
  • [1] Silicone Alleviates Palladium Toxicity by Modifying Palladium Uptake, Ascorbate–Glutathione Cycle, and Glyoxalase System in Maize Seedlings
    Özkan Aksakal
    Journal of Plant Growth Regulation, 2023, 42 : 3662 - 3676
  • [2] Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of as and Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System
    Ahmad, Parvaiz
    Alyemeni, Mohammed Nasser
    Al-Huqail, Asma A.
    Alqahtani, Moneerah A.
    Wijaya, Leonard
    Ashraf, Muhammad
    Kaya, Cengiz
    Bajguz, Andrzej
    PLANTS-BASEL, 2020, 9 (07): : 1 - 18
  • [3] Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system
    Kaya, Cengiz
    Ashraf, Muhammad
    Alyemeni, Mohammed Nasser
    Corpas, Francisco J.
    Ahmad, Parvaiz
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 399
  • [4] Nanoselenium inhibits chromium toxicity in wheat plants by modifying the antioxidant defense system, ascorbate glutathione cycle, and glyoxalase system
    Shah, Tariq
    Khan, Zeeshan
    Alahmadi, Tahani Awad
    Shah, Muhammad Abdullah
    Ahmad, Muhammad Zawar
    Rasool, Salman
    Ansari, Mohammad Javed
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 220
  • [5] Exogenous Melatonin Improves Drought Tolerance in Maize Seedlings by Regulating Photosynthesis and the Ascorbate-Glutathione Cycle
    Guo, Y. Y.
    Li, H. J.
    Zhao, C. F.
    Xue, J. Q.
    Zhang, R. H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2020, 67 (05) : 809 - 821
  • [6] Silicon attenuates the negative effects of chromium stress in tomato plants by modifying antioxidant enzyme activities, ascorbate-glutathione cycle and glyoxalase system
    Alam, Pravej
    Balawi, Thamer H.
    Altalayan, Fahad H.
    Hatamleh, Ashraf Atef
    Ashraf, Muhammad
    Ahmad, Parvaiz
    ACTA PHYSIOLOGIAE PLANTARUM, 2021, 43 (07)
  • [7] Effect of Cerium (Ce) on the Redox States of Ascorbate and Glutathione through Ascorbate-glutathione Cycle in the Roots of Maize Seedlings under Salt Stress
    Hu, H.
    Shan, C.
    CEREAL RESEARCH COMMUNICATIONS, 2018, 46 (01) : 31 - 40
  • [8] Effect of Cerium (Ce) on the Redox States of Ascorbate and Glutathione through Ascorbate-glutathione Cycle in the Roots of Maize Seedlings under Salt Stress
    H. Hu
    C. Shan
    Cereal Research Communications, 2018, 46 : 31 - 40
  • [9] Maize Grain Extract Enriched with Polyamines Alleviates Drought Stress in Triticum aestivum through Up-Regulation of the Ascorbate-Glutathione Cycle, Glyoxalase System, and Polyamine Gene Expression
    Alharby, Hesham F.
    Al-Zahrani, Hassan S.
    Alzahrani, Yahya M.
    Alsamadany, Hameed
    Hakeem, Khalid R.
    Rady, Mostafa M.
    AGRONOMY-BASEL, 2021, 11 (05):
  • [10] Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-a-vis ascorbate-glutathione cycle
    Singh, Shikha
    Singh, Anita
    Srivastava, Prabhat Kumar
    Prasad, Sheo Mohan
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2018, 178 : 76 - 84