DT-SNE: t-SNE discrete visualizations as decision tree structures

被引:8
|
作者
Bibal, Adrien [1 ,2 ]
Delchevalerie, Valentin [3 ]
Frenay, Benoit [2 ]
机构
[1] Catholic Univ Louvain, CENTAL, Pl Montesquieu 3, B-1348 Louvain La Neuve, Belgium
[2] Univ Namur, Fac Comp Sci, PReCISE, NaDI, Namur, Belgium
[3] Univ Namur, Fac Comp Sci, PReCISE, NaDI & naXys, Rue Grandgagnage 21, B-5000 Namur, Belgium
关键词
Nonlinear dimensionality reduction; Visualization; Interpretability; t-SNE; Decision trees; DIMENSIONALITY REDUCTION; VISUAL ANALYSIS;
D O I
10.1016/j.neucom.2023.01.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visualizations are powerful tools that are commonly used by data scientists to get more insights about their high dimensional data. One can for example cite t-SNE, which is probably one of the most famous and widely-used visualization techniques. However, t-SNE is a nonlinear and non-parametric technique that makes it suffer from a lack of interpretability. In this paper, we present a new technique inspired by t-SNE's objective function that combines its ability to build nice visualizations with the interpretability of decision trees. This new visualization technique, called DT-SNE, can be seen as a discrete visualization technique where groups of instances are provided, as well as a ranking between them. The decision rules of the decision tree provide clear insights to interpret these different groups. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [1] Conditional t-SNE: more informative t-SNE embeddings
    Bo Kang
    Darío García García
    Jefrey Lijffijt
    Raúl Santos-Rodríguez
    Tijl De Bie
    [J]. Machine Learning, 2021, 110 : 2905 - 2940
  • [2] Conditional t-SNE: more informative t-SNE embeddings
    Kang, Bo
    Garcia Garcia, Dario
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. MACHINE LEARNING, 2021, 110 (10) : 2905 - 2940
  • [3] Conditional t-SNE: More informative t-SNE embeddings
    Kang, Bo
    Garcia, Dario Garcia
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. 2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [4] Wasserstein t-SNE
    Bachmann, Fynn
    Hennig, Philipp
    Kobak, Dmitry
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 104 - 120
  • [5] HCt-SNE: Hierarchical Constraints with t-SNE
    Vu, Viet Minh
    Bibal, Adrien
    Frenay, Benoit
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] Graph Layouts by t-SNE
    Kruiger, J. F.
    Rauber, P. E.
    Martins, R. M.
    Kerren, A.
    Kobourov, S.
    Telea, A. C.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 283 - 294
  • [7] Interactive Supervision with t-SNE
    Luus, Francois
    Khan, Naweed
    Akhalwaya, Ismail
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19), 2019, : 85 - 92
  • [8] Visualization of SNPs with t-SNE
    Platzer, Alexander
    [J]. PLOS ONE, 2013, 8 (02):
  • [9] Clustering with t-SNE, Provably
    Linderman, George C.
    Steinerberger, Stefan
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (02): : 313 - 332
  • [10] Accelerating Hyperbolic t-SNE
    Skrodzki, Martin
    van Geffen, Hunter
    Chaves-de-Plaza, Nicolas F.
    Hollt, Thomas
    Eisemann, Elmar
    Hildebrandt, Klaus
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (07) : 4403 - 4415