Simple Adaptive Size-Exact Testing for Full-Vector and Subvector Inference in Moment Inequality Models

被引:6
|
作者
Cox, Gregory [1 ]
Shi, Xiaoxia [2 ]
机构
[1] Natl Univ Singapore, Dept Econ, Singapore, Singapore
[2] Univ Wisconsin Madison, Dept Econ, Madison, WI USA
来源
REVIEW OF ECONOMIC STUDIES | 2023年 / 90卷 / 01期
关键词
Moment Inequalities; Uniform Inference; Likelihood Ratio; Subvector Inference; Convex Polyhedron; Linear Programming; CONFIDENCE SETS; PARAMETERS; VALIDITY; REGIONS;
D O I
10.1093/restud/rdac015
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a simple test for moment inequalities that has exact size in normal models with known variance and has uniformly asymptotically exact size under asymptotic normality. The test compares the quasi-likelihood ratio statistic to a chi-squared critical value, where the degree of freedom is the rank of the inequalities that are active in finite samples. The test requires no simulation and thus is computationally fast and especially suitable for constructing confidence sets for parameters by test inversion. It uses no tuning parameter for moment selection and yet still adapts to the slackness of the moment inequalities. Furthermore, we show how the test can be easily adapted to inference on subvectors in the common empirical setting of conditional moment inequalities with nuisance parameters entering linearly. User-friendly Matlab code to implement the test is provided.
引用
收藏
页码:201 / 228
页数:28
相关论文
共 2 条