Modeling of the magnetobarocaloric effect in the framework of the mean-field theory

被引:0
|
作者
Starkov, Ivan A. [1 ]
Starkov, Alexander S. [2 ]
机构
[1] All Russian Res Inst Fats, Chernyakhovskij St 10, St Petersburg 191119, Russia
[2] ITMO Univ, Kronverksky Pr 49, St Petersburg 197101, Russia
基金
俄罗斯基础研究基金会;
关键词
Magnetocaloric effect; Barocaloric effect; Magnetobarocaloric effect; Multicaloric effect; Magnetostriction; Thermodynamic efficiency; Coefficient of performance; AG; HEAT;
D O I
10.1016/j.jmmm.2023.171344
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetobarocaloric effect (MBCE) is studied, which consists in the change of entropy and temperature in a layer of magnetostrictive material upon simultaneous application of a magnetic field and pressure. The MBCE is described in the framework of the generalized mean-field model accounting both the nonlinear dependence of the effective magnetic intensity on magnetization and its dependence on pressure. To test the developed MBCE model, a comparison with experimental data for La0.85Ag0.15MnO3 manganite ceramics is performed. Using a single set of model parameters, the results can be reproduced with good accuracy. Based on the obtained values for the material constants, the thermodynamic efficiency of the Brayton cycle on the magnetobarocaloric effect is calculated. The combined use of magnetic field and pressure allows to significantly increase the efficiency of this cycle (by 10%-20%), while the entropy can increase by 45%.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Modeling asset price processes based on mean-field framework
    Ieda, Masashi
    Shiino, Masatoshi
    [J]. PHYSICAL REVIEW E, 2011, 84 (06):
  • [2] Orbital effect of the magnetic field in dynamical mean-field theory
    Acheche, S.
    Arsenault, L. -F.
    Tremblay, A. -M. S.
    [J]. PHYSICAL REVIEW B, 2017, 96 (23)
  • [3] Mean-Field Modeling of Magnetocaloric Effect of Antiferromagnetic Compounds
    Alho, B. P.
    Ribeiro, P. O.
    de Oliveira, R. S.
    de Sousa, V. S. R.
    Nobrega, E. P.
    Margato, B. C.
    da Silva, J. M. N.
    von Ranke, P. J.
    [J]. IEEE MAGNETICS LETTERS, 2022, 13
  • [4] Modeling the Magnetocaloric Effect of La0.8MnO3 by the Mean-Field Theory
    Henchiri, C.
    Benali, A.
    Mnasri, T.
    Valente, M. A.
    Dhahri, E.
    [J]. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2020, 33 (04) : 1143 - 1149
  • [5] Modeling the Magnetocaloric Effect of La0.8MnO3 by the Mean-Field Theory
    C. Henchiri
    A. Benali
    T. Mnasri
    M. A. Valente
    E. Dhahri
    [J]. Journal of Superconductivity and Novel Magnetism, 2020, 33 : 1143 - 1149
  • [6] Mean-field theory of fractional quantum Hall effect
    Dzyaloshinskii, I
    [J]. PHYSICAL REVIEW B, 2002, 65 (20): : 1 - 7
  • [7] Embedded Mean-Field Theory
    Fornace, Mark E.
    Lee, Joonho
    Miyamoto, Kaito
    Manby, Frederick R.
    Miller, Thomas F., III
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (02) : 568 - 580
  • [8] NUCLEAR MEAN-FIELD THEORY
    BOWMAN, JM
    [J]. PHYSICS TODAY, 1985, 38 (12) : 9 - 9
  • [9] A MEAN-FIELD THEORY OF MELTING
    JACOBS, RL
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (02): : 273 - 283
  • [10] Mean-field theory of sandpiles
    Vergeles, M
    Maritan, A
    Banavar, JR
    [J]. PHYSICAL REVIEW E, 1997, 55 (02): : 1998 - 2000