Extinction and strong persistence in the Beddington-DeAngelis predator-prey random model

被引:1
|
作者
Zhu, Huijian [1 ]
Li, Lijie [1 ]
Pan, Weiquan [1 ]
机构
[1] Yulin Normal Univ, Sch Math & Stat, Yulin, Guangxi, Peoples R China
关键词
compact attracting set; forward dynamics; Ornstein-Uhlenback process; predator-prey model; CHEMOSTAT MODELS; INPUT FLOW; GROWTH; DISTURBANCES; FLUCTUATIONS; STABILITY; DYNAMICS;
D O I
10.1002/mma.9629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a predator-prey model with a Beddington-DeAngelis type functional response under the stationary Ornstein-Uhlenback process. First, we prove the existence and uniqueness of the global positive solution for the given system for any initial datum. Second, we turn to its internal structures and establish the existence of a compact forward-absorbing set as well as a forward attracting one. Finally, we carry out some numerical simulations to support the theoretical results.
引用
收藏
页码:19351 / 19363
页数:13
相关论文
共 50 条
  • [1] A detailed study of the Beddington-DeAngelis predator-prey model
    Haque, Mainul
    MATHEMATICAL BIOSCIENCES, 2011, 234 (01) : 1 - 16
  • [2] Persistence and global stability of Bazykin predator-prey model with Beddington-DeAngelis response function
    Sarwardi, Sahabuddin
    Haque, Mainul
    Mandal, Prashanta Kumar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 189 - 209
  • [3] Persistence and periodic measure of a stochastic predator-prey model with Beddington-DeAngelis functional response
    Yang, Jiangtao
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (06)
  • [4] Existence of complex patterns in the Beddington-DeAngelis predator-prey model
    Haque, Mainul
    MATHEMATICAL BIOSCIENCES, 2012, 239 (02) : 179 - 190
  • [5] Traveling waves for a generalized Beddington-DeAngelis predator-prey model
    Zhao, Xiangkui
    Wang, Huanrong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 111
  • [6] STABILITY AND BIFURCATION IN A BEDDINGTON-DEANGELIS TYPE PREDATOR-PREY MODEL WITH PREY DISPERSAL
    Xu, Rui
    Ma, Zhien
    Gan, Qintao
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (05) : 1761 - 1783
  • [7] Dynamics of a Beddington-DeAngelis Type Predator-Prey Model with Impulsive Effect
    Sun Shulin
    Guo Cuihua
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [8] Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response
    Zhang, Xiao-Chong
    Sun, Gui-Quan
    Jin, Zhen
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [9] Role of Fear in a Predator-Prey Model with Beddington-DeAngelis Functional Response
    Pal, Saheb
    Majhi, Subrata
    Mandal, Sutapa
    Pal, Nikhil
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (07): : 581 - 595
  • [10] Global Stability in a Diffusive Beddington-Deangelis and Tanner Predator-Prey Model
    Luo, Demou
    FILOMAT, 2019, 33 (17) : 5511 - 5517