Recognizable rehabilitation movements of multiple unilateral upper limb: An fMRI study of motor execution and motor imagery

被引:1
|
作者
Ma, Jun [1 ]
Yang, Banghua [1 ,4 ,5 ,7 ]
Qiu, Wenzheng [1 ]
Zhang, Jian [2 ]
Yan, Linfeng [3 ]
Wang, Wen [3 ,6 ]
机构
[1] Shanghai Univ, Res Ctr Brain Comp Engn, Sch Mechatron Engn & Automat, Sch Med, Shanghai 200441, Peoples R China
[2] Shanghai Univ, Shanghai Universal Med Imaging Diagnost Ctr, Shanghai 200441, Peoples R China
[3] Fourth Mil Med Univ, Tangdu Hosp, Dept Radiol & Funct, Mol Imaging Key Lab Shaanxi Prov, Xian 710038, Shaanxi, Peoples R China
[4] Minist Educ, Engn Res Ctr Tradit Chinese Med Intelligent Rehabi, Shanghai 201203, Peoples R China
[5] Shanghai Univ, Res Ctr Brain, Sch Mechatron Engn & Automat, Comp Engn, Xian 200444, Shanghai, Peoples R China
[6] 169 Changle West Rd, Xian, Shaanxi, Peoples R China
[7] 99 Shangda Rd BaoShan Dist, Shanghai, Peoples R China
关键词
Unilateral upper limb tasks; Motor execution (ME); Motor imagery (MI); Region of interest (ROI); Statistical analysis; BRAIN ACTIVITY; ACTIVATION; NETWORK; TASKS;
D O I
10.1016/j.jneumeth.2023.109861
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: This paper presents a study investigating the recognizability of multiple unilateral upper limb movements in stroke rehabilitation. Methods: A functional magnetic experiment is employed to study motor execution (ME) and motor imagery (MI) of four movements for the unilateral upper limb: hand-grasping, hand -handling, arm-reaching, and wrist-twisting. The functional magnetic resonance imaging (fMRI) images of ME and MI tasks are statistically analyzed to delineate the region of interest (ROI). Then parameter estimation associated with ROIs for each ME and MI task are evaluated, where differences in ROIs for different movements are compared using analysis of covariance (ANCOVA). Results: All movements of ME and MI tasks activate motor areas of the brain, and there are significant differences (p < 0.05) in ROIs evoked by different movements. The activation area is larger when executing the hand-grasping task instead of the others. Conclusion: The four movements we propose can be adopted as MI tasks, especially for stroke rehabilitation, since they are highly recognizable and capable of activating more brain areas during MI and ME.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] EEG unilateral limb motor imagery modeling based on fMRI screening
    Ma, Jun
    Wang, Wen
    Qiu, Wenzheng
    Yang, Banghua
    [J]. 2021 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2021, 12076
  • [2] Voluntary phantom limb movement is a form of motor execution and not motor imagery: fMRI, DCM and EMG evidence
    Raffin, E.
    Giraux, P.
    Mattout, J.
    Reilly, K.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2010, 17 : 33 - 33
  • [3] Classification of EEG for Upper Limb Motor Imagery: An Approach for Rehabilitation
    Paul, Yogesh
    Jaswal, Ram Avtar
    [J]. 2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 346 - 350
  • [4] Motor neuroplasticity: A MEG-fMRI study of motor imagery and execution in healthy ageing
    Burianova, Hana
    Marstaller, Lars
    Rich, Anina N.
    Williams, Mark A.
    Savage, Greg
    Ryan, Margaret
    Sowman, Paul F.
    [J]. NEUROPSYCHOLOGIA, 2020, 146
  • [5] Disentangling motor execution from motor imagery with the phantom limb
    Raffin, Estelle
    Mattout, Jeremie
    Reilly, Karen T.
    Giraux, Pascal
    [J]. BRAIN, 2012, 135 : 582 - 595
  • [6] MILimbEEG: A dataset of EEG signals related to upper and lower limb execution of motor and motor imagery tasks
    Asanza, Victor
    Lorente-Leyva, Leandro L.
    Peluffo-Ordonez, Diego H.
    Montoya, Daniel
    Gonzalez, Kleber
    [J]. DATA IN BRIEF, 2023, 50
  • [7] Motor imagery of complex everyday movements. An fMRI study
    Szameitat, Andre J.
    Shen, Shan
    Sterr, Annette
    [J]. NEUROIMAGE, 2007, 34 (02) : 702 - 713
  • [8] Utilization of motor imagery in upper limb rehabilitation: a systematic scoping review
    Harris, J. E.
    Hebert, A.
    [J]. CLINICAL REHABILITATION, 2015, 29 (11) : 1092 - 1107
  • [9] Upper-limb rehabilitation robot based on motor imagery EEG
    Xu B.
    Peng S.
    Song A.
    [J]. Jiqiren/Robot, 2011, 33 (03): : 307 - 313
  • [10] Human-robot interaction in motor imagery: A system based on the STFCN for unilateral upper limb rehabilitation assistance
    Tian, Hui
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2024, 411