High-order Adaptive Mesh Refinement multigrid Poisson solver in any dimension

被引:1
|
作者
Deriaz, Erwan [1 ]
机构
[1] Univ Lorraine, Inst Jean Lamour Materiaux Met Nanosci Plasmas Sur, CNRS, Campus Artem,2 Allee Andre Guinier,BP 50840, F-54011 Nancy, France
关键词
Poisson solver; Adaptive Mesh Refinement; Multigrid; Compact finite difference; High order scheme; EQUATIONS;
D O I
10.1016/j.jcp.2023.112012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A numerical method to solve the d-dimensional Poisson equation with 2pth-order accuracy for arbitrary d and p integers is proposed in the Adaptive Mesh Refinement framework. Compact finite differences provide high-order compact stencils fitted for the AMR framework where reaching far-away neighboring points is very penalizing. Vertex-centered mesh refinement and interpolation ease the implementation of a multigrid algorithm formulated in the general case for any stencil in any dimension. Its computational costs are compared to those of other existing methods. And, in extensive numerical experiments, a sixth-order version of it in dimensions two to six and a tenth-order version in dimension three are tested.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multigrid elliptic equation solver with adaptive mesh refinement
    Brown, JD
    Lowe, LL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 209 (02) : 582 - 598
  • [2] Efficient GPU parallelization of adaptive mesh refinement technique for high-order compressible solver with immersed boundary
    Zaghi, S.
    Salvadore, F.
    Di Mascio, A.
    Rossi, G.
    [J]. COMPUTERS & FLUIDS, 2023, 266
  • [3] Multigrid high-order mesh refinement techniques for composite grid electrostatics calculations
    Beck, TL
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1999, 20 (16) : 1731 - 1739
  • [4] High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous Galerkin scheme
    Guillet, Thomas
    Pakmor, Ruediger
    Springel, Volker
    Chandrashekar, Praveen
    Klingenberg, Christian
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (03) : 4209 - 4246
  • [5] High-order schemes for predicting computational aeroacoustic propagation with adaptive mesh refinement
    Edward Peers
    Xun Huang
    [J]. Acta Mechanica Sinica, 2013, 29 : 1 - 11
  • [6] High-order schemes for predicting computational aeroacoustic propagation with adaptive mesh refinement
    Edward Peers
    Xun Huang
    [J]. Acta Mechanica Sinica, 2013, 29 (01) : 1 - 11
  • [7] Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement
    Schaal, Kevin
    Bauer, Andreas
    Chandrashekar, Praveen
    Pakmor, Ruediger
    Klingenberg, Christian
    Springel, Volker
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (04) : 4278 - 4300
  • [8] High-order schemes for predicting computational aeroacoustic propagation with adaptive mesh refinement
    Peers, Edward
    Huang, Xun
    [J]. ACTA MECHANICA SINICA, 2013, 29 (01) : 1 - 11
  • [9] Multigrid - Adaptive local refinement solver for incompressible flows
    Iliev, O
    Stoyanov, D
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 361 - 368
  • [10] A high-order flux reconstruction adaptive mesh refinement method for magnetohydrodynamics on unstructured grids
    Yang, Jingjing
    Liang, Chunlei
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 86 (03) : 231 - 253