Quantile-Based Multivariate Log-Normal Distribution

被引:2
|
作者
Moran-Vasquez, Raul Alejandro [1 ]
Roldan-Correa, Alejandro [1 ]
Nagar, Daya K. [1 ]
机构
[1] Univ Antioquia, Inst Matemat, Calle 67 53-108, Medellin 050010, Colombia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 08期
关键词
Kullback-Leibler divergence; mixed moments; independence; multivariate log-normal distribution; quantile-based distribution; REGRESSION;
D O I
10.3390/sym15081513
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a quantile-based multivariate log-normal distribution, providing a new multivariate skewed distribution with positive support. The parameters of this distribution are interpretable in terms of quantiles of marginal distributions and associations between pairs of variables, a desirable feature for statistical modeling purposes. We derive statistical properties of the quantile-based multivariate log-normal distribution involving the transformations, closed-form expressions for the mixed moments, expected value, covariance matrix, mode, Shannon entropy, and Kullback-Leibler divergence. We also present results on marginalization, conditioning, and independence. Additionally, we discuss parameter estimation and verify its performance through simulation studies. We evaluate the model fitting based on Mahalanobis-type distances. An application to children data is presented.
引用
收藏
页数:15
相关论文
共 50 条