Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions

被引:43
|
作者
Nawaz, Muhammad [1 ]
Heydarkhan-Hagvall, Sepideh [2 ,3 ]
Tangruksa, Benyapa [1 ,3 ]
Garibotti, Hernan Gonzalez-King [2 ]
Jing, Yujia [4 ]
Maugeri, Marco [1 ,5 ]
Kohl, Franziska [6 ,7 ]
Hultin, Leif [8 ]
Reyahi, Azadeh [1 ]
Camponeschi, Alessandro [1 ]
Kull, Bengt [2 ]
Christoffersson, Jonas [2 ,3 ]
Grimsholm, Ola [1 ,9 ]
Jennbacken, Karin [2 ]
Sundqvist, Martina [1 ]
Wiseman, John [6 ]
Bidar, Abdel Wahad [6 ]
Lindfors, Lennart [4 ]
Synnergren, Jane [3 ,10 ]
Valadi, Hadi [1 ]
机构
[1] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Dept Rheumatol & Inflammat Res, S-41346 Gothenburg, Sweden
[2] AstraZeneca, BioPharmaceut R&D, Early Cardiovasc Renal & Metab CVRM, Biosci Cardiovasc, S-43183 Molndal, Sweden
[3] Univ Skovde, Syst Biol Res Ctr, Sch Biosci, S-54128 Skovde, Sweden
[4] AstraZeneca, BioPharmaceut R&D, Adv Drug Delivery Pharmaceut Sci, S-43183 Molndal, Sweden
[5] R&D AstraZeneca, Safety Innovat Clin Pharmacol & Safety Sci, S-43183 Molndal, Sweden
[6] AstraZeneca, BioPharmaceut R&D, Discovery Sci Translat Genom, S-43183 Molndal, Sweden
[7] Karolinska Inst, Dept Med Biochem & Biophys, S-17177 Stockholm, Sweden
[8] AstraZeneca, BioPharmaceut R&D, Clin Pharmacol & Safety Sci, Imaging & Data Analyt, S-43183 Molndal, Sweden
[9] Med Univ Vienna, Inst Pathophysiol & Allergy Res, A-1090 Vienna, Austria
[10] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Dept Mol & Clin Med, S-41345 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
endocytosis; extracellular vesicles; in vivo; lipid nanoparticles; LNP-mRNA; luciferase mRNA; mRNA copy number; uptake; VEGF-A mRNA; SIRNA DELIVERY; EXOSOMES; COMMUNICATION; INJECTION; INTERPLAY; VACCINES; RELEASE; DISEASE; BRAIN; CELLS;
D O I
10.1002/advs.202206187
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID-19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF-A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF-A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP-mRNAs between cells is functionally extended by cells' own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF-A mRNA delivery to cells via LNPs, a fraction of internalized VEGF-A mRNA is secreted via EVs. The overexpressed VEGF-A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA-Seq analysis reveals that as cells' response to LNP-VEGF-A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF-A mRNA in vitro and in vivo. Upon equal amount of VEGF-A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF-A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF-A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF-A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs.
引用
收藏
页数:25
相关论文
共 31 条
  • [1] Novel Hybridization Approach for Loading of Extracellular Vesicles with Therapeutic RNA for Functional Delivery In Vitro and In Vivo
    Shatnyeva, Olga
    Friis, Kristina P.
    Akcakaya, Pinar
    Porritt, Michelle
    Berdichevski, Sasha
    Lazaro-Ibanez, Elisa
    Kunalingam, Lavaniya
    Osteikoetxea, Xabier
    Silva, Andreia
    Sharma, Priya
    Kapustin, Alexander
    Maresca, Marcello
    Wiseman, John
    Bohlooly, Mohammad
    Seeliger, Frank
    Johansson, Camilla
    Dekker, Niek
    MOLECULAR THERAPY, 2020, 28 (04) : 238 - 238
  • [2] Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo
    Huanzhen Ni
    Marine Z. C. Hatit
    Kun Zhao
    David Loughrey
    Melissa P. Lokugamage
    Hannah E. Peck
    Ada Del Cid
    Abinaya Muralidharan
    YongTae Kim
    Philip J. Santangelo
    James E. Dahlman
    Nature Communications, 13
  • [3] Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo
    Ni, Huanzhen
    Hatit, Marine Z. C.
    Zhao, Kun
    Loughrey, David
    Lokugamage, Melissa P.
    Peck, Hannah E.
    Del Cid, Ada
    Muralidharan, Abinaya
    Kim, YongTae
    Santangelo, Philip J.
    Dahlman, James E.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] Efficient in vitro and in vivo mRNA and CRISPR delivery with lipid nanoparticles
    Olsen, A. L.
    Petersen, J. L.
    Askou, A.
    Russ, K.
    Sorensen, J.
    Brandt, C. B.
    Jensen, N.
    Willen, K.
    Volbracht, C.
    Stummann, T.
    Boysen, A.
    Curci, B.
    Olesen, E. B. R.
    Zhou, Y.
    Rasmussen, R.
    Jakobsen, T.
    Petersen, T. S.
    Pena, I.
    Rio, P.
    Nejsum, P.
    Ludvigsen, M.
    Lin, L.
    Etzerodt, A.
    Fog, K.
    Jensen, P.
    Corydon, T.
    Luo, Y.
    HUMAN GENE THERAPY, 2024, 35 (3-4) : A334 - A334
  • [5] Trojan horse treatment based on PEG-coated extracellular vesicles to deliver doxorubicin to melanoma in vitro and in vivo
    Patras, Laura
    Ionescu, Aura Elena
    Munteanu, Cristian
    Hajdu, Renata
    Kosa, Andreea
    Porfire, Alina
    Licarete, Emilia
    Rauca, Valentin Florian
    Sesarman, Alina
    Luput, Lavinia
    Bulzu, Paul
    Chiroi, Paul
    Tranca, Rares Andrei
    Meszaros, Marta-Szilvia
    Negrea, Giorgiana
    Barbu-Tudoran, Lucian
    Potara, Monica
    Szedlacsek, Stefan
    Banciu, Manuela
    CANCER BIOLOGY & THERAPY, 2022, 23 (01) : 1 - 16
  • [6] Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies
    Boudna, Marie
    Campos, Andres Delgado
    Vychytilova-Faltejskova, Petra
    Machackova, Tana
    Slaby, Ondrej
    Souckova, Kamila
    CELL COMMUNICATION AND SIGNALING, 2024, 22 (01)
  • [7] Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies
    Marie Boudna
    Andres Delgado Campos
    Petra Vychytilova-Faltejskova
    Tana Machackova
    Ondrej Slaby
    Kamila Souckova
    Cell Communication and Signaling, 22
  • [8] Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH
    Hajj, Khalid A.
    Ball, Rebecca L.
    Deluty, Sarah B.
    Singh, Shridhar R.
    Strelkova, Daria
    Knapp, Christopher M.
    Whitehead, Kathryn A.
    SMALL, 2019, 15 (06)
  • [9] Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing
    El-Mayta, Rakan
    Padilla, Marshall S.
    Billingsley, Margaret M.
    Han, Xuexiang
    Mitchell, Michael J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (191):
  • [10] Incorporation of poly( γ-glutamic acid) in lipid nanoparticles for enhanced mRNA delivery efficiency in vitro and in vivo
    Zhang, Hongqian
    Gao, Xue
    Sun, Qian
    Dong, Xiaoxue
    Zhu, Zongwei
    Yang, Chuanxu
    ACTA BIOMATERIALIA, 2024, 177 : 361 - 376