A randomized sparse Kaczmarz solver for sparse signal recovery via minimax-concave penalty

被引:0
|
作者
Niu, Yu-Qi [1 ]
Zheng, Bing [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
minimax-concave penalty; randomized Kaczmarz method; signal recovery; LINEARIZED BREGMAN METHOD; BLOCK KACZMARZ; VARIABLE SELECTION; CONVERGENCE; ALGORITHMS;
D O I
10.1002/mma.9927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The randomized sparse Kaczmarz (RSK) method is an algorithm used to calculate sparse solutions for the basis pursuit problem. In this paper, we propose an algorithm framework for computing sparse solutions of linear systems, which includes the sparse Kaczmarz and sparse block Kaczmarz algorithms. In order to overcome the limitations of the l1$$ {\ell}_1 $$ penalty, we design an effective and new randomized sparse Kaczmarz algorithm (RSK-MCP) based on the non-convex minimax-concave penalty (MCP) in sparse signal reconstruction. Additionally, we prove that the RSK-MCP algorithm is equivalent to the randomized coordinate descent method for the corresponding dual problem. Based on this result, we demonstrate that the RSK-MCP algorithm exhibits linear convergence, meaning it converges to a sparse solution of the MCP model when the regularization of MCP is a strongly convex function. Numerical experiments indicate that the RSK-MCP algorithm outperforms RSK-L1 in terms of both efficiency and accuracy.
引用
收藏
页码:6431 / 6445
页数:15
相关论文
共 50 条
  • [1] Impact force identification via sparse regularization with generalized minimax-concave penalty
    Liu, Junjiang
    Qiao, Baijie
    He, Weifeng
    Yang, Zhibo
    Chen, Xuefeng
    [J]. JOURNAL OF SOUND AND VIBRATION, 2020, 484
  • [2] Sparse reconstruction for blade tip timing signal using generalized minimax-concave penalty
    Xu, Jinghui
    Qiao, Baijie
    Liu, Junjiang
    Ao, Chunyan
    Teng, Guangrong
    Chen, Xuefeng
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 161
  • [3] MULTIMODAL RETINAL IMAGE REGISTRATION AND FUSION BASED ON SPARSE REGULARIZATION VIA A GENERALIZED MINIMAX-CONCAVE PENALTY
    Tian, Xin
    Zheng, Rencheng
    Chu, Colin J.
    Bell, Oliver H.
    Nicholson, Lindsay B.
    Achim, Alin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1010 - 1014
  • [4] Periodic group-sparse method via generalized minimax-concave penalty for machinery fault diagnosis
    He, Wangpeng
    Wen, Zhihui
    Liu, Xuan
    Guo, Xiaoya
    Zhu, Juanjuan
    Chen, Weisheng
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [5] Sparse signal recovery via minimax- concave penalty and l 1-norm loss function
    Sun, Yuli
    Chen, Hao
    Tao, Jinxu
    [J]. IET SIGNAL PROCESSING, 2018, 12 (09) : 1091 - 1098
  • [6] Design of Sparse Control With Minimax Concave Penalty
    Hayashi, Naoki
    Ikeda, Takuya
    Nagahara, Masaaki
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 544 - 549
  • [7] Vector minimax concave penalty for sparse representation
    Wang, Shibin
    Chen, Xuefeng
    Dai, Weiwei
    Selesnick, Ivan W.
    Cai, Gaigai
    Cowen, Benjamin
    [J]. DIGITAL SIGNAL PROCESSING, 2018, 83 : 165 - 179
  • [8] Tensor recovery based on Bivariate Equivalent Minimax-Concave Penalty
    Zhang, Hongbing
    Fan, Hongtao
    Li, Yajing
    [J]. PATTERN RECOGNITION, 2024, 149
  • [9] Group-Sparse Feature Extraction via Ensemble Generalized Minimax-Concave Penalty for Wind-Turbine-Fault Diagnosis
    He, Wangpeng
    Zhang, Peipei
    Liu, Xuan
    Chen, Binqiang
    Guo, Baolong
    [J]. SUSTAINABILITY, 2022, 14 (24)
  • [10] Sparse ECG Denoising with Generalized Minimax Concave Penalty
    Jin, Zhongyi
    Dong, Anming
    Shu, Minglei
    Wang, Yinglong
    [J]. SENSORS, 2019, 19 (07)