Systematics of Mukdenia and Oresitrophe (Saxifragaceae): Insights from genome skimming data

被引:3
|
作者
Liu, Lu-Xian [1 ]
Deng, Pan [1 ]
Chen, Meng-Zhen [1 ]
Yu, Li-Min [2 ]
Lee, Joongku [3 ]
Jiang, Wei-Mei [4 ,5 ]
Fu, Cheng-Xin [4 ,5 ]
Shang, Fu-De [1 ]
Li, Pan [4 ,5 ]
机构
[1] Henan Univ, State Key Lab Cotton Biol, Lab Plant Germplasm & Genet Engn, Sch Life Sci, Kaifeng 475000, Peoples R China
[2] Xianrendong Nat Reserve, Zhuanghe 116407, Peoples R China
[3] Chungnam Natl Univ, Dept Environm & Forest Resources, Daejeon 34134, South Korea
[4] Zhejiang Univ, Minist Educ, Key Lab Conservat Biol Endangered Wildlife, Coll Life Sci, Hangzhou 310058, Peoples R China
[5] Zhejiang Univ, Lab Systemat & Evolutionary Bot & Biodivers, Coll Life Sci, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA barcode; phylogenomics; phylogeny; plastome; species identification; taxonomy; GENE TREES; PLANT MITOCHONDRIAL; INTERGENERIC HYBRIDIZATION; CHLOROPLAST DNA; SPECIES TREE; NUCLEAR; PHYLOGENY; ALIGNMENT; SEQUENCE; DISCORDANCE;
D O I
10.1111/jse.12833
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Oresitrophe and Mukdenia (Saxifragaceae) are epilithic sister genera used in traditional Chinese medicine. The taxonomy of Mukdenia, especially of M. acanthifolia, has been controversial. To address this, we produced plastid and mitochondrial data using genome skimming for Mukdenia acanthifolia and Mukdenia rossii, including three individuals of each species. We assembled complete plastomes, mitochondrial CDS and nuclear ribosomal ETS/ITS sequences using these data. Comparative analysis shows that the plastomes of Mukdenia and Oresitrophe are relatively conservative in terms of genome size, structure, gene content, RNA editing sites and codon usage. Five plastid regions that represent hotspots of change (trnH-psbA, psbC-trnS, trnM-atpE, petA-psbJ and ccsA-ndhD) are identified within Mukdenia, and six regions (trnH-psbA, petN-psbM, trnM-atpE, rps16-trnQ, ycf1 and ndhF) contain a higher number of species-specific parsimony-informative sites that may serve as potential DNA barcodes for species identification. To infer phylogenetic relationships between Mukdenia and Oresitrophe, we combined our data with published data based on three different datasets. The monophyly of each species (Oresitrophe rupifraga, M. acanthifolia and M. rossii) and the inferred topology ((M. rossii, M. acanthifolia), O. rupifraga) are well supported in trees reconstructed using the complete plastome sequences, but M. acanthifolia and M. rossii did not form a separate clade in the trees based on ETS + ITS data, while the mitochondrial CDS trees are not well-resolved. We found low recovery of genes in the Angiosperms353 target enrichment panel from our unenriched genome skimming data. Hybridization or incomplete lineage sorting may be the cause of discordance between trees reconstructed from organellar and nuclear data. Considering its morphological distinctiveness and our molecular phylogenetic results, we strongly recommend that M. acanthifolia be treated as a distinct species.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 50 条
  • [1] Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data
    Luxian Liu
    Yuewen Wang
    Peizi He
    Pan Li
    Joongku Lee
    Douglas E. Soltis
    Chengxin Fu
    BMC Genomics, 19
  • [2] Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data
    Liu, Luxian
    Wang, Yuewen
    He, Peizi
    Li, Pan
    Lee, Joongku
    Soltis, Douglas E.
    Fu, Chengxin
    BMC GENOMICS, 2018, 19
  • [3] Backbone phylogeny of Salix based on genome skimming data
    KaiYun Chen
    JinDan Wang
    RuiQi Xiang
    XueDan Yang
    QuanZheng Yun
    Yuan Huang
    Hang Sun
    JiaHui Chen
    Plant Diversity, 2025, 47 (02) : 178 - 188
  • [4] The complete chloroplast genome of Crossostephium chinense (Asteraceae), using genome skimming data
    Chen, Tingting
    Du, Yingxue
    Zhao, Haodi
    Dong, Meifang
    Liu, Luxian
    MITOCHONDRIAL DNA PART B-RESOURCES, 2019, 4 (01): : 322 - 323
  • [5] Genome Skimming: A Rapid Approach to Gaining Diverse Biological Insights into Multicellular Pathogens
    Denver, Dee R.
    Brown, Amanda M. V.
    Howe, Dana K.
    Peetz, Amy B.
    Zasada, Inga A.
    PLOS PATHOGENS, 2016, 12 (08)
  • [6] A pipeline for assembling low copy nuclear markers from plant genome skimming data for phylogenetic use
    Reginato, Marcelo
    PEERJ, 2022, 10
  • [7] Lessons from genome skimming of arthropod-preserving ethanol
    Linard, B.
    Arribas, P.
    Andujar, C.
    Crampton-Platt, A.
    Vogler, A. P.
    MOLECULAR ECOLOGY RESOURCES, 2016, 16 (06) : 1365 - 1377
  • [8] Development of genomic resources for the genus Celtis (Cannabaceae) based on genome skimming data
    Luxian Liu
    Yonghua Zhang
    Pan Li
    PlantDiversity, 2021, 43 (01) : 43 - 53
  • [9] Development of genomic resources for Wenchengia alternifolia (Lamiaceae) based on genome skimming data
    Zhou, Qi-Yue
    Cai, Hui-Xia
    Liu, Zi-Han
    Yuan, Lang-Xing
    Yang, Lei
    Yang, Tuo
    Li, Bo
    Li, Pan
    PLANT DIVERSITY, 2022, 44 (06) : 542 - 551
  • [10] Reassessing Banana Phylogeny and Organelle Inheritance Modes Using Genome Skimming Data
    Wu, Chung-Shien
    Sudianto, Edi
    Chiu, Hui-Lung
    Chao, Chih-Ping
    Chaw, Shu-Miaw
    FRONTIERS IN PLANT SCIENCE, 2021, 12