TOPOLOGICAL CHARACTERISTICS OF 5D SPATIALLY DYNAMIC BRAIN NETWORKS IN SCHIZOPHRENIA

被引:0
|
作者
Salman, Mustafa S. [1 ,2 ,3 ]
Iraji, Armin [2 ,3 ]
Lewis, Noah [2 ,3 ,4 ]
Calhoun, Vince D. [1 ,2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[3] Emory Univ, Atlanta, GA 30322 USA
[4] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
fMRI; brain dynamics; spatial dynamics; schizophrenia; topological data analysis; Betti number; Wasserstein distance; FUNCTIONAL CONNECTIVITY; SEPARATION;
D O I
10.1109/ISBI53787.2023.10230513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The last decade of rich data-driven research on functional magnetic resonance imaging (fMRI) has provided novel in-sights into human brain function and aberrant behavior in brain disorders. Independent component analysis (ICA) is a widely-used technique for data-driven analysis of fMRI data. Spatial ICA is the most prominent variation of ICA and provides replicable and interpretable intrinsic connectivity network (ICN). It assumes common spatial activation across time. However, very recent studies indicate that there is utility in adopting a dynamic spatial activation modeling approach. Characterizing dynamics for both temporal and spatial domains means we have a multitude of decompositions of the already high-dimensional, multi-dataset, and multi-subject fMRI data. Hence making sense of the derived data becomes a significant issue. Here we use topological data analysis (TDA) to identify topological descriptors of the windowed spatially dynamic components of fMRI data. We discover and summarize differences in the spatial dynamics of controls and schizophrenia patients (SZs). We discover that SZs generally have lower Betti numbers and higher Wasserstein distance between spatiotemporal brain states, which provide intuitive summaries of the reduced dynamism SZs exhibit in resting-state fMRI studies.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Topological vertex for Higgsed 5d TN theories
    Hayashi, Hirotaka
    Zoccarato, Gianluca
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):
  • [2] Topological strings and 5d TN partition functions
    Hirotaka Hayashi
    Hee-Cheol Kim
    Takahiro Nishinaka
    [J]. Journal of High Energy Physics, 2014
  • [3] Topological strings and 5d TN partition functions
    Hayashi, Hirotaka
    Kim, Hee-Cheol
    Nishinaka, Takahiro
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [4] Topological vertex for Higgsed 5d TN theories
    Hirotaka Hayashi
    Gianluca Zoccarato
    [J]. Journal of High Energy Physics, 2015
  • [5] Abnormal topological organization of structural brain networks in schizophrenia
    Zhang, Yuanchao
    Lin, Lei
    Lin, Ching-Po
    Zhou, Yuan
    Chou, Kun-Hsien
    Lo, Chun-Yi
    Su, Tung-Ping
    Jiang, Tianzi
    [J]. SCHIZOPHRENIA RESEARCH, 2012, 141 (2-3) : 109 - 118
  • [6] Giant Topological Insulator Gap in Graphene with 5d Adatoms
    Hu, Jun
    Alicea, Jason
    Wu, Ruqian
    Franz, Marcel
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [7] Topological objects in 5D Maxwell-Einstein supergravity
    Fairbairn, M
    [J]. PHYSICS LETTERS B, 2001, 498 (1-2) : 131 - 135
  • [8] Self-similar cosmologies in 5D: our universe as a topological separation from an empty 5D Minkowski space
    de Leon, J. Ponce
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (03):
  • [9] Exploring 5d BPS Spectra with Exponential Networks
    Banerjee, Sibasish
    Longhi, Pietro
    Romo, Mauricio
    [J]. ANNALES HENRI POINCARE, 2019, 20 (12): : 4055 - 4162
  • [10] Exploring 5d BPS Spectra with Exponential Networks
    Sibasish Banerjee
    Pietro Longhi
    Mauricio Romo
    [J]. Annales Henri Poincaré, 2019, 20 : 4055 - 4162