A Comparison of Synchronous and Asynchronous Distributed Particle Swarm Optimization for Edge Computing

被引:5
|
作者
Busetti, Riccardo [1 ]
El Ioini, Nabil [1 ]
Barzegar, Hamid R. [1 ]
Pahl, Claus [1 ]
机构
[1] Free Univ Bozen Bolzano, Bolzano, Italy
关键词
Edge Cloud; Optimization; Particle Swarm Optimization; Distributed PSO; Synchronous PSO; Apache Spark; Kubernetes; Docker;
D O I
10.5220/0011815500003488
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Edge computing needs to deal with concerns such as load balancing, resource provisioning, and workload placement as optimization problems. Particle Swarm Optimization (PSO) is a nature-inspired stochastic optimization approach that aims at iteratively improving a solution of a problem over a given objective. Utilising PSO in a distributed edge setting would allow the transfer of resource-intensive computational tasks from a central cloud to the edge, this providing a more efficient use of existing resources. However, there are challenges to meet performance and fault tolerance targets caused by the resource-constrained edge environment with a higher probability of faults. We introduce here distributed synchronous and asynchronous variants of the PSO algorithm. These two forms specifically target the performance and fault tolerance requirements in an edge network. The PSO algorithms distribute the load across multiple nodes in order to effectively realize coarse-grained parallelism, resulting in a significant performance increase.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 50 条
  • [1] A Performance Study on Synchronous and Asynchronous Updates in Particle Swarm Optimization
    Rada-Vilela, Juan
    Zhang, Mengjie
    Seah, Winston
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 21 - 28
  • [2] Autonomous Particles Groups for Synchronous-Asynchronous Particle Swarm Optimization
    Valdivia-Gonzalez, Arturo
    Aranguren-Navarro, Itzel N.
    2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
  • [3] Asynchronous particle swarm optimization
    Gazi, Veysel
    2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 41 - 44
  • [4] Asynchronous Particle Swarm Optimization for Swarm Robotics
    Ab Aziz, Nor Azlina
    Ibrahim, Zuwairie
    INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS 2012 (IRIS 2012), 2012, 41 : 951 - 957
  • [5] Improving particle swarm optimization via adaptive switching asynchronous - synchronous update
    Ab Aziz, Nor Azlina
    Ibrahim, Zuwairie
    Mubin, Marizan
    Nawawi, Sophan Wahyudi
    Mohamad, Mohd Saberi
    APPLIED SOFT COMPUTING, 2018, 72 : 298 - 311
  • [6] Decentralized Asynchronous Particle Swarm Optimization
    Akat, S. Burak
    Gazi, Veysel
    2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2008, : 194 - 201
  • [7] Parallel asynchronous particle swarm optimization
    Koh, Byung-Il
    George, Alan D.
    Haftka, Raphael T.
    Fregly, Benjamin J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (04) : 578 - 595
  • [8] Quantum Particle Swarm Optimization for Task Offloading in Mobile Edge Computing
    Dong, Shi
    Xia, Yuanjun
    Kamruzzaman, Joarder
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (08) : 9113 - 9122
  • [9] Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene
    Zhu, Si-Feng
    Zhao, Ming-Yang
    Chai, Zheng-Yi
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (11): : 2698 - 2705
  • [10] Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems
    Serani, Andrea
    Leotardi, Cecilia
    Iemma, Umberto
    Campana, Emilio F.
    Fasano, Giovanni
    Diez, Matteo
    APPLIED SOFT COMPUTING, 2016, 49 : 313 - 334