Semi-Supervised Semantic Segmentation-Based Remote Sensing Identification Method for Winter Wheat Planting Area Extraction

被引:3
|
作者
Zhang, Mingmei [1 ]
Xue, Yongan [2 ]
Zhan, Yuanyuan [3 ]
Zhao, Jinling [3 ]
机构
[1] Shanxi Inst Energy, Dept Geol & Surveying Engn, Jinzhong 030600, Peoples R China
[2] Taiyuan Univ Technol, Coll Min Engn, Taiyuan 030024, Peoples R China
[3] Anhui Univ, Natl Engn Res Ctr Agroecol Big Data Anal & Applica, Hefei 230601, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 12期
基金
中国国家自然科学基金;
关键词
semi-supervised classification; sematic segmentation; winter wheat; self-training; data augmentation;
D O I
10.3390/agronomy13122868
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To address the cost issue associated with pixel-level image annotation in fully supervised semantic segmentation, a method based on semi-supervised semantic segmentation is proposed for extracting winter wheat planting areas. This approach utilizes self-training with pseudo-labels to learn from a small set of images with pixel-level annotations and a large set of unlabeled images, thereby achieving the extraction. In the constructed initial dataset, a random sampling strategy is employed to select 1/16, 1/8, 1/4, and 1/2 proportions of labeled data. Furthermore, in conjunction with the concept of consistency regularization, strong data augmentation techniques are applied to the unlabeled images, surpassing classical methods such as cropping and rotation to construct a semi-supervised model. This effectively alleviates overfitting caused by noisy labels. By comparing the prediction results of different proportions of labeled data using SegNet, DeepLabv3+, and U-Net, it is determined that the U-Net network model yields the best extraction performance. Moreover, the evaluation metrics MPA and MIoU demonstrate varying degrees of improvement for semi-supervised semantic segmentation compared to fully supervised semantic segmentation. Notably, the U-Net model trained with 1/16 labeled data outperforms the models trained with 1/8, 1/4, and 1/2 labeled data, achieving MPA and MIoU scores of 81.63%, 73.31%, 82.50%, and 76.01%, respectively. This method provides valuable insights for extracting winter wheat planting areas in scenarios with limited labeled data.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning
    Li, Linhui
    Zhang, Wenjun
    Zhang, Xiaoyan
    Emam, Mahmoud
    Jing, Weipeng
    ELECTRONICS, 2023, 12 (02)
  • [2] Decouple and weight semi-supervised semantic segmentation of remote sensing images
    Huang, Wei
    Shi, Yilei
    Xiong, Zhitong
    Zhu, Xiao Xiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 212 : 13 - 26
  • [3] SEMI-SUPERVISED SEMANTIC GENERATIVE NETWORKS FOR REMOTE SENSING IMAGE SEGMENTATION
    Lu, Wanxuan
    Jin, Jidong
    Sun, Xian
    Fu, Kun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6386 - 6389
  • [4] Semi-supervised semantic segmentation based on Generative Adversarial Networks for remote sensing images
    Liu Yu-Xi
    Zhang Bo
    Wang Bin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2020, 39 (04) : 473 - 482
  • [5] A Semi-supervised Road Segmentation Method for Remote Sensing Image Based on SegFormer
    Ma, Tian
    Zhou, Xinlei
    Xi, Runtao
    Yang, Jiayi
    Zhang, Jiehui
    Li, Fanhui
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 189 - 201
  • [6] Semi-Supervised Semantic Segmentation of Remote Sensing Images With Iterative Contrastive Network
    Wang, Jia-Xin
    Chen, Si-Bao
    Ding, Chris H. Q.
    Tang, Jin
    Luo, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] A Bias Correction Semi-Supervised Semantic Segmentation Framework for Remote Sensing Images
    Zhang, Li
    Tan, Zhenshan
    Zheng, Yuzhi
    Zhang, Guo
    Zhang, Wen
    Li, Zhijiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [8] Enhancing the Semi-Supervised Semantic Segmentation With Prototype-Based Supervision for Remote Sensing Images
    Zheng, Zhiyu
    Lv, Liang
    Zhang, Lefei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [9] High-resolution remote sensing image semantic segmentation based on semi-supervised full convolution network method
    Geng Y.
    Tao C.
    Shen J.
    Zou Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (04): : 499 - 508
  • [10] Semi-Supervised Semantic Segmentation of Remote Sensing Images Based on Dual Cross-Entropy Consistency
    Cui, Mengtian
    Li, Kai
    Li, Yulan
    Kamuhanda, Dany
    Tessone, Claudio J.
    ENTROPY, 2023, 25 (04)