Automatic Selection of Compiler Optimizations by Machine Learning

被引:0
|
作者
Peker, Melih [1 ]
Ozturk, Ozcan [1 ]
Yildirim, Suleyman [2 ]
Ozturk, Mahiye Uluyagmur [2 ]
机构
[1] Bilkent Univ, Bilgisayar Muhendisligi Bolumu, Bilkent, Turkiye
[2] Huawei Turkiye Ar Ge Merkezi, Istanbul, Turkiye
关键词
GCC; Compilers; Machine Learning; Optimization;
D O I
10.1109/SIU59756.2023.10223902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many widely used telecommunications applications have extremely long run times. Therefore, faster and more efficient execution of these codes on the same hardware is important in critical telecommunication applications such as base stations. Compilers greatly affect the properties of the executable program to be created. It is possible to change properties such as compilation speed, execution time, power consumption and code size using compiler flags. This study aims to find the set of flags that will provide the shortest run time among hundreds of compiler flag combinations in GCC using code flow analysis, loop analysis and machine learning methods without running the program.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] An Automatic Compiler Optimizations Selection Framework for Embedded Applications
    Hung, Shih-Hao
    Tu, Chia-Heng
    Lin, Huang-Sen
    Chen, Chi-Meng
    2009 INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS, PROCEEDINGS, 2009, : 381 - +
  • [2] An Automatic Tool for Tuning Compiler Optimizations
    Plotnikov, Dmitry
    Melnik, Dmitry
    Vardanyan, Mamikon
    Buchatskiy, Ruben
    Zhuykov, Roman
    2013 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT), 2013,
  • [3] Parallel Pattern Compiler for Automatic Global Optimizations
    Schmitz, Adrian
    Burak, Semih
    Miller, Julian
    Mueller, Matthias S.
    PARALLEL COMPUTING, 2024, 122
  • [4] Automatic Tuning of Compiler Optimizations and Analysis of their Impact
    Plotnikov, Dmitry
    Melnik, Dmitry
    Vardanyan, Mamikon
    Buchatskiy, Ruben
    Zhuykov, Roman
    Lee, Je-Hyung
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 1312 - 1321
  • [5] A machine learning approach to automatic production of compiler heuristics
    Monsifrot, A
    Bodin, F
    Quiniou, R
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2002, 2443 : 41 - 50
  • [6] Raced Profiles: Efficient Selection of Competing Compiler Optimizations
    Leather, Hugh
    O'Boyle, Michael
    Worton, Bruce
    ACM SIGPLAN NOTICES, 2009, 44 (07) : 50 - 59
  • [7] Raced Profiles: Efficient Selection of Competing Compiler Optimizations
    Leather, Hugh
    O'Boyle, Michael
    Worton, Bruce
    LCTES'09: PROCEEDINGS OF THE 2009 ACM SIGPLAN/SIGBED CONFERENCE ON LANGUAGES, COMPILERS, AND TOOLS FOR EMBEDDED SYSTEMS, 2009, : 50 - 59
  • [8] Automatic parameters selection in machine learning
    Ludermir, Teresa B.
    de Souto, Marcilio C. P.
    Vellasco, Marley
    NEUROCOMPUTING, 2012, 75 (01) : 1 - 2
  • [9] Fast and effective orchestration of compiler optimizations for automatic performance tuning
    Pan, Zhelong
    Eigenmann, Rudolf
    CGO 2006: 4TH INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION, 2006, : 319 - +
  • [10] Automatic derivation of compiler machine descriptions
    Collberg, CS
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2002, 24 (04): : 369 - 408