Consistent graph embedding network with optimal transport for incomplete multi-view clustering

被引:3
|
作者
Lin, Renjie [1 ,2 ]
Du, Shide [1 ,2 ]
Wang, Shiping [1 ,2 ]
Guo, Wenzhong [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou 350116, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised clustering; Incomplete multi-view learning; Graph embedding; Optimal transport;
D O I
10.1016/j.ins.2023.119418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing incomplete multi-view learning models focus on reconstructing the latent variables of multiple views by exploring complementary and consistent information among diverse views. However, filling the missing information for views results in a loss of consistency, while fusion and reconstruction between views face over-fitting problems. The optimal transport algorithm delicately measures the distance of two distributions, resulting in decreased reconstruction errors and guaranteeing consistency and complementarity across multiple views of the data. In light of this, this paper proposes the incorporation of the optimal transport algorithm into the framework of incomplete multi-view clustering. The proposed consistent graph embedding network (CGEN-OT) via optimal transport combines the adversarial module and fusion module to learn a completed latent graph embedding. Specifically, CGEN-OT utilizes an adversarial module to generate complete views and fuses them into a consistent embedding, and introduces reconstruction loss and Sinkhorn loss to jointly optimize the proposed network and obtain superior latent graph embedding and clustering performance. To further validate the clustering accuracy and convergence of the CGEN-OT, experimental evaluation was conducted on six distinct incomplete datasets. A comparison with existing state-of-the-art models highlights the superiority of the proposed framework.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Consistent Multiple Graph Embedding for Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Zhao, Yao
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1008 - 1018
  • [2] Multi-view clustering with graph regularized optimal transport
    Yao, Jie
    Lin, Renjie
    Lin, Zhenghong
    Wang, Shiping
    [J]. INFORMATION SCIENCES, 2022, 612 : 563 - 575
  • [3] Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis
    Liu, Ye
    He, Lifang
    Cao, Bokai
    Yu, Philip S.
    Ragin, Ann B.
    Leow, Alex D.
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 117 - 124
  • [4] Robust Diversified Graph Contrastive Network for Incomplete Multi-view Clustering
    Xue, Zhe
    Du, Junping
    Zhou, Hai
    Guan, Zhongchao
    Long, Yunfei
    Zang, Yu
    Liang, Meiyu
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3936 - 3944
  • [5] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    [J]. IET COMPUTER VISION, 2022,
  • [6] Refining Graph Structure for Incomplete Multi-View Clustering
    Li, Xiang-Long
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2300 - 2313
  • [7] Consensus Graph Learning for Incomplete Multi-view Clustering
    Zhou, Wei
    Wang, Hao
    Yang, Yan
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 529 - 540
  • [8] Multi-View Network Embedding Via Graph Factorization Clustering and Co-Regularized Multi-View Agreement
    Sun, Yiwei
    Bui, Ngot
    Hsieh, Tsung-Yu
    Honavar, Vasant
    [J]. 2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1006 - 1013
  • [9] Incomplete Multi-View Clustering with Regularized Hierarchical Graph
    Zhao, Shuping
    Fei, Lunke
    Wen, Jie
    Zhang, Bob
    Zhao, Pengyang
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3060 - 3068
  • [10] Multi-view Clustering with Graph Embedding for Connectome Analysis
    Ma, Guixiang
    He, Lifang
    Lu, Chun-Ta
    Shao, Weixiang
    Yu, Philip S.
    Leow, Alex D.
    Ragin, Ann B.
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 127 - 136