Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals

被引:0
|
作者
Wang, Yi-xuan [1 ]
机构
[1] Univ Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260 USA
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2023年 / 39卷 / 01期
关键词
compressible liquid crystal system; Q-tensor; weak solutions; martingale solution; stochastic compactness; Mach number; incompressible limit; MACH NUMBER LIMIT; NAVIER-STOKES EQUATIONS; GLOBAL WEAK SOLUTIONS; SINGULAR LIMITS; FLOWS; EXISTENCE;
D O I
10.1007/s10255-023-1033-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the connection between the compressible Navier-Stokes equations coupled by the Q-tensor equation for liquid crystals with the incompressible system in the periodic case, when the Mach number is low. To be more specific, the convergence of the weak solutions of the compressible nematic liquid crystal model to the incompressible one is proved as the Mach number approaches zero, and we also obtain the similar results in the stochastic setting when the equations are driven by a stochastic force. Our approach is based on the uniform estimates of the weak solutions and the martingale solutions, then we justify the limits using various compactness criteria.
引用
收藏
页码:179 / 201
页数:23
相关论文
共 50 条
  • [1] Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals
    Yi-xuan WANG
    Acta Mathematicae Applicatae Sinica, 2023, 39 (01) : 179 - 201
  • [2] Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals
    Yi-xuan Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 179 - 201
  • [3] INCOMPRESSIBLE LIMIT OF A COMPRESSIBLE LIQUID CRYSTALS SYSTEM
    郝乙行
    刘宪高
    ActaMathematicaScientia, 2013, 33 (03) : 781 - 796
  • [4] INCOMPRESSIBLE LIMIT OF A COMPRESSIBLE LIQUID CRYSTALS SYSTEM
    Hao, Yihang
    Liu, Xiangao
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 781 - 796
  • [5] Linear numerical schemes for a Q-tensor system for nematic liquid crystals
    Swain, Justin
    Tierra, Giordano
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [6] Rigorous uniaxial limit of the Qian–Sheng inertial Q-tensor hydrodynamics for liquid crystals
    Li, Sirui
    Wang, Wei
    Zeng, Qi
    Physica D: Nonlinear Phenomena, 2025, 476
  • [7] Incompressible Limit for the Compressible Flow of Liquid Crystals
    Wang, Dehua
    Yu, Cheng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (04) : 771 - 786
  • [8] Incompressible Limit for the Compressible Flow of Liquid Crystals
    Dehua Wang
    Cheng Yu
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 771 - 786
  • [9] Q-tensor model for electrokinetics in nematic liquid crystals
    Tovkach, O. M.
    Conklin, Christopher
    Calderer, M. Carme
    Golovaty, Dmitry
    Lavrentovich, Oleg D.
    Vinals, Jorge
    Walkington, Noel J.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (05):
  • [10] Global Well Posedness for a Q-tensor Model of Nematic Liquid Crystals
    Murata, Miho
    Shibata, Yoshihiro
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)