QUENCHED SMALL DEVIATION FOR THE TRAJECTORY OF A RANDOM WALK WITH RANDOM ENVIRONMENT IN TIME*

被引:1
|
作者
Lv, Y. [1 ]
Hong, W. [2 ,3 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai, Peoples R China
[2] Beijing Univ, Sch Math Sci, Beijing, Peoples R China
[3] Beijing Univ, Lab Math & Complex Syst, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
random environment; small deviation probability; partial sums of independent; random variables; BROWNIAN-MOTION; METRIC ENTROPY; PROBABILITIES; SURVIVAL;
D O I
10.1137/S0040585X97T991404
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the small deviation probability for a random walk with random environment in time. Compared to [A. A. Mogul'skii, Theory Probab. Appl., 19 (1975), pp. 726-736], for the independent and identically distributed (i.i.d.) random walk, the rate is smaller (due to the random environment), which is specified in terms of the quenched and annealed variance.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 50 条
  • [1] Large deviation principle for random walk in a quenched random environment in the low speed regime
    Pisztora, A
    Povel, T
    ANNALS OF PROBABILITY, 1999, 27 (03): : 1389 - 1413
  • [2] LEVEL 1 QUENCHED LARGE DEVIATION PRINCIPLE FOR RANDOM WALK IN DYNAMIC RANDOM ENVIRONMENT
    Campos, David
    Drewitz, Alexander
    Ramirez, Alejandro F.
    Rassoul-Agha, Firas
    Seppalainen, Timo
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2013, 8 (01): : 1 - 29
  • [3] Quenched Large Deviations for Random Walk in a Random Environment
    Yilmaz, Atilla
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (08) : 1033 - 1075
  • [4] Quenched invariance principle for random walk in time-dependent balanced random environment
    Deuschel, Jean-Dominique
    Guo, Xiaoqin
    Ramirez, Alejandro F.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 363 - 384
  • [5] Quenched moderate deviations principle for random walk in random environment
    Hong WenMing
    Wang HuaMing
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 1947 - 1956
  • [6] Quenched moderate deviations principle for random walk in random environment
    WenMing Hong
    HuaMing Wang
    Science China Mathematics, 2010, 53 : 1947 - 1956
  • [7] Quenched moderate deviations principle for random walk in random environment
    HONG WenMing 1 & WANG HuaMing 1
    2 Department of Basic Courses
    Science China Mathematics, 2010, 53 (08) : 1947 - 1956
  • [8] THE QUENCHED CENTRAL LIMIT THEOREM FOR A MODEL OF RANDOM WALK IN RANDOM ENVIRONMENT
    Bezborodov, Viktor
    Di Persio, Luca
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (04): : 311 - 316
  • [9] Weak quenched limit theorems for a random walk in a sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Kolodziejska, Alicja
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [10] Detecting periodicity from the trajectory of a random walk in random environment
    Remillard, Bruno N.
    Vaillancourt, Jean
    STATISTICS & PROBABILITY LETTERS, 2019, 155