It is known that static traversable wormholes in Einstein gravity are supported by matter that violates null energy conditions (NEC). Essentially, such wormholes will be characterized by a central throat with anisotropic matter lining the throat that violates NEC. This, in turn, provides viable geometry for the wormhole to sustain. In 2018, Herrera [Phys. Rev. D 97, 044010 (2018)] introduced a new classification for spherically symmetric bodies called "complexity factor." It was proposed that a spherically symmetric non-trivial geometry can be classified as complex or non-complex based on the nature of the inhomogeneity and anisotropy of the stress-energy tensors with only homogeneous and isotropic matter distribution leading to null complexity. Mathematically, there was also another way of obtaining zero complexity geometry. In this context, since static traversable wormholes, by default, are characterized by anisotropic and inhomogeneous matter stress tensors, the question we answer is whether it is possible to obtain zero complexity class of wormholes supported by exotic matter.
机构:
Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Ave Padre Hurtado 750, Vina Del Mar, ChileUniv Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile
Anabalon, Andres
de Wit, Bernard
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Inst Theoret Phys, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
Nikhef Theory Grp, Sci Pk 105, NL-1098 XG Amsterdam, NetherlandsUniv Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile
de Wit, Bernard
Oliva, Julio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Concepcion, Dept Fis, Casilla 160-C, Concepcion, ChileUniv Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile