Engineered Nanomaterials to Potentiate CRISPR/Cas9 Gene Editing for Cancer Therapy

被引:24
|
作者
Yi, Ke [1 ]
Kong, Huimin [1 ]
Lao, Yeh-Hsing [2 ]
Li, Di [3 ]
Mintz, Rachel L. [4 ]
Fang, Tianxu [5 ]
Chen, Guojun [5 ]
Tao, Yu [1 ]
Li, Mingqiang [1 ]
Ding, Jianxun [3 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 3, Ctr Nanomed, Lab Biomat & Translat Med, 600 Tianhe Rd, Guangzhou 510630, Peoples R China
[2] SUNY Buffalo, Dept Pharmaceut Sci, 3435 Main St, Buffalo, NY 14214 USA
[3] Chinese Acad Sci, Key Lab Polymer Ecomat, Changchun Inst Appl Chem, 5625 Renmin St, Changchun 130022, Peoples R China
[4] Washington Univ St Louis, Dept Biomed Engn, 1 Brookings Dr, St Louis, MO 63110 USA
[5] McGill Univ, Rosalind & Morris Goodman Canc Inst, Dept Biomed Engn, 3655 Promenade Sir William Osler, Montreal, PQ H3G 0B1, Canada
基金
中国国家自然科学基金;
关键词
cancer therapy; CRISPR/Cas9; drug delivery; gene editing; nanomaterials; CAS9; MESSENGER-RNA; DELIVERY-SYSTEM; DRUG-DELIVERY; INTRACELLULAR DELIVERY; NANOPARTICLE DELIVERY; CRISPR-CAS9; NUCLEASES; CHEMICAL-MODIFICATION; TARGETING DELIVERY; PROTEIN CORONA; GENOME;
D O I
10.1002/adma.202300665
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) gene-editing technology shows promise for manipulating single or multiple tumor-associated genes and engineering immune cells to treat cancers. Currently, most gene-editing strategies rely on viral delivery; yet, while being efficient, many limitations, mainly from safety and packaging capacity considerations, hinder the use of viral CRISPR vectors in cancer therapy. In contrast, recent advances in non-viral CRISPR/Cas9 nanoformulations have paved the way for better cancer gene editing, as these nanoformulations can be engineered to improve safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability. In this review, the advance in non-viral CRISPR delivery is highlighted, and there is a discussion on how these approaches can be potentially used to treat cancers in addressing the aforementioned limitations, followed by the perspectives in designing a proper CRISPR/Cas9-based cancer nanomedicine system with translational potential. Advanced engineered nanomaterials for delivering CRISPR/Cas9 gene-editing components have revolutionized cancer therapeutics by enhancing their safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability.image
引用
收藏
页数:45
相关论文
共 50 条
  • [1] CRISPR/CAS9 GENE EDITING
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, : 26 - 27
  • [2] A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing
    Chen, Xin-Zhu
    Guo, Rong
    Zhao, Cong
    Xu, Jing
    Song, Hang
    Yu, Hua
    Pilarsky, Christian
    Nainu, Firzan
    Li, Jing-Quan
    Zhou, Xin-Ke
    Zhang, Jian-Ye
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [3] Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy
    Gao, Qianqian
    Dong, Xuan
    Xu, Qumiao
    Zhu, Linnan
    Wang, Fei
    Hou, Yong
    Chao, Cheng-chi
    CANCER MEDICINE, 2019, 8 (09): : 4254 - 4264
  • [4] Somatic Gene Therapy of Mucopolysaccharidosis with CRISPR/Cas9 Genome Editing
    Kao, Winston W. Y.
    Ferreira, Tarsis
    Dong, Fei
    Hu, Yueh-Chiang
    Call, Mindy Kay
    Coulson-Thomas, Vivien Jane
    Zhang, Jianhua
    Rice, Taylor
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [5] CRISPR/Cas9 and gene therapy
    Giono, Luciana E.
    MEDICINA-BUENOS AIRES, 2017, 77 (05) : 405 - 409
  • [6] Engineered Metal-Organic Frameworks for Targeted CRISPR/Cas9 Gene Editing
    Rabiee, Navid
    Rabiee, Mohammad
    ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2025,
  • [7] CRISPR/Cas9 Essential Gene Editing in Drosophila
    Osadchiy, I. S.
    Kamalyan, S. O.
    Tumashova, K. Y.
    Georgiev, P. G.
    Maksimenko, O. G.
    ACTA NATURAE, 2023, 15 (02): : 70 - 74
  • [8] Optical Control of CRISPR/Cas9 Gene Editing
    Hemphill, James
    Borchardt, Erin K.
    Brown, Kalyn
    Asokan, Aravind
    Deiters, Alexander
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (17) : 5642 - 5645
  • [9] Spatiotemporal control of CRISPR/Cas9 gene editing
    Chenya Zhuo
    Jiabin Zhang
    Jung-Hwan Lee
    Ju Jiao
    Du Cheng
    Li Liu
    Hae-Won Kim
    Yu Tao
    Mingqiang Li
    Signal Transduction and Targeted Therapy, 6
  • [10] GENE EDITING IN CHONDROCYTES USING CRISPR/CAS9
    Gibson, G.
    Yang, M.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S2 - S3